• Title/Summary/Keyword: LES Model

Search Result 307, Processing Time 0.027 seconds

Generation of a skeletal mechanism of coal combustion based on the chemical pathway analysis

  • Ahn, Seongyool;Watanabe, Hiroaki;Shoji, Tetsuya;Umemoto, Satoshi;Tnno, Kenji
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.5-7
    • /
    • 2014
  • A skeletal mechanism of coal combustion was derived from a detailed coal combustion kinetic mechanism through an importance analysis of chemical pathways. The reduction process consists of roughly two parts. The first process is performed based on a connectivity analysis between species. In this process, DRGEPSA is chosen for reduction process. Strongly connected species and related reactions from the important species set as start species by the operator are sorted into the reduced mechanism. About 70% of species and reactions can be removed with a limited accuracy loss. Subsequently the second reduction process, CSP, is performed. This method focuses on an importance of each reaction and can reduce a volume of mechanism appropriately. Through these analyses, a skeletal mechanism is generated that is including 65 species and 150 reactions. The generated skeletal mechanism is verified through a comparison with the detailed mechanism in the homogeneous reactor model of CHEMKIN-PRO under wide range of conditions. The generated mechanism can give an advantage in the analysis of coal combustion characteristics in detail in large scale simulations such as LES and DNS.

  • PDF

Numerical simulation on fluid-structure interaction of wind around super-tall building at high reynolds number conditions

  • Huang, Shenghong;Li, Rong;Li, Q.S.
    • Structural Engineering and Mechanics
    • /
    • v.46 no.2
    • /
    • pp.197-212
    • /
    • 2013
  • With more and more high-rise building being constructed in recent decades, bluff body flow with high Reynolds number and large scale dimensions has become an important topic in theoretical researches and engineering applications. In view of mechanics, the key problems in such flow are high Reynolds number turbulence and fluid-solid interaction. Aiming at such problems, a parallel fluid-structure interaction method based on socket parallel architecture was established and combined with the methods and models of large eddy simulation developed by authors recently. The new method is validated by the full two-way FSI simulations of 1:375 CAARC building model with Re = 70000 and a full scale Taipei101 high-rise building with Re = 1e8, The results obtained show that the proposed method and models is potential to perform high-Reynolds number LES and high-efficiency two-way coupling between detailed fluid dynamics computing and solid structure dynamics computing so that the detailed wind induced responses for high-rise buildings can be resolved practically.

The study of flow structure in a mixing tank for different Reynolds numbers using LES (대형 와 모사를 통한 레이놀즈 수 증가에 따른 혼합 탱크내의 유동 구조의 연구)

  • Yoon, Hyun-Sik;Ha, Man-Yeong
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1806-1813
    • /
    • 2003
  • The stirred tank reactor is one of the most commonly used devices in industry for achieving mixing and reaction. Here we report on results obtained from the large eddy simulations of flow inside the tank performed using a spectral multi-domain technique. The computations were driven by specifying the impeller-induced flow at the blade tip radius. Stereoscopic PIV measurements (Hill et $al.^{(1)}$) along with the theoretical model of the impeller-induced flow (Yoon et $al.^{(2)}$) were used in defining the impeller-induced flow as superposition of circumferential, jet and tip vortex pair components. Large eddy simulation of flow in a stirred tank was carried out for the three different Reynolds numbers of 4000, 16000 and 64000. The effect of different Reynolds numbers is well observed in both instantaneous and time averaged flow fields. The instantaneous and mean vortex structures are identified by plotting an isosurfaces of swirling strength for all Reynolds numbers. The Reynolds number dependency of the nondimeansional eddy viscosity, resolve scale and subgrid scale dissipations is clearly shown in this study.

  • PDF

Turbulence-induced noise of a submerged cylinder using a permeable FW-H method

  • Choi, Woen-Sug;Choi, Yoseb;Hong, Suk-Yoon;Song, Jee-Hun;Kwon, Hyun-Wung;Jung, Chul-Min
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.3
    • /
    • pp.235-242
    • /
    • 2016
  • Among underwater noise sources around submerged bodies, turbulence-induced noise has not been well investigated because of the difficulty of predicting it. In computational aeroacoustics, a number of studies has been conducted using the Ffowcs Williamse-Hawkings (FW-H) acoustic analogy without consideration of quadrupole source term due to the unacceptable calculation cost. In this paper, turbulence-induced noise is predicted, including that due to quadrupole sources, using a large eddy simulation (LES) turbulence model and a developed formulation of permeable FW-H method with an open source computational fluid dynamics (CFD) tool-kit. Noise around a circular cylinder is examined and the results of using the acoustic analogy method with and without quadrupole noise are compared, i.e. the FW-H method without quadrupole noise versus the permeable FW-H method that includes quadrupole sources. The usability of the permeable FW-H method for the prediction of turbulence-noise around submerged bodies is shown.

Color Changes in Clarified Fruit and Vegetable Juices by Mixing Ratios

  • Lee, Jun-Ho;Park, Yong-Hee
    • Preventive Nutrition and Food Science
    • /
    • v.5 no.4
    • /
    • pp.197-199
    • /
    • 2000
  • Clarified fruit and vegetable juices (apple, carrot and tangerine) were produced using ultrafiltration and their color change due to the mixing ratio were evaluated. clarification was carried out by passing he supernatant of extracted juice through a filter and also by using a membrane of molecular weight cut-off 10,000 Daltons to obtain the juice ultrafiltrates. The mixing ratio between apple and carrot juices was kept constant at 1:1 while increasing the amount of tangerine juice according to 10, 20, 30, 40 and 50% an stored at 4$^{\circ}C$ prior to the color measurement. Hue angle ({TEX}$h_{ab}${/TEX}) and {TEX}$L^{*}${/TEX}-value increased as the tangerine mixing ratio increased. The color difference indicated by ΔE-value also increased as the amount of tangerine increased indicating that the color of the mixed juice became pale and the changes were slight but distinctive. On the other hand, chroma ({TEX}$C^{*}${/TEX}), {TEX}$La{*}${/TEX}- and {TEX}$b^{*}${/TEX}-values decreased as the tangerine mixing ratio increased indicating that the color of the mixed juice became slightly more grayish and the samples were becoming les yellow. A simple mathematical model to predict each color characteristic is proposed.

  • PDF

The study of Flow Structure in a Mixing Tank for Different Reynolds Numbers Using LES (대형 와 모사를 통한 레이놀즈 수 증가에 따른 혼합 탱크 내의 유동 구조의 연구)

  • Yoon, Hyun-Sik;Chun, Ho-Hwan;Ha, Man-Yeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.9
    • /
    • pp.1290-1298
    • /
    • 2003
  • The stirred tank reactor is one of the most commonly used devices in industry for achieving mixing and reaction. Here we report on results obtained from the large eddy simulations of flow inside the tank performed using a spectral multi-domain technique. The computations were driven by specifying the impeller-induced flow at the blade tip radius. Stereoscopic PlY measurements (Hill et al. $^{(1)}$) along with the theoretical model of the impeller-induced flow (Yoon et al. $^{(2)}$) were used in defining the impeller-induced flow as superposition of circumferential, jet and tip vortex pair components. Large eddy simulation of flow in a stirred tank was carried out for the three different Reynolds numbers of 4000, 16000 and 64000. The effect of different Reynolds numbers is well observed in both instantaneous and time averaged flow fields. The instantaneous and mean vortex structures are identified by plotting an isosurfaces of swirling strength for all Reynolds numbers. The Reynolds number dependency of the non-dimensional eddy viscosity, resolved scale and subgrid scale dissipations is clearly shown in this study.

A study on the numerical method to predict the accurate aeroacoustic noise on axial fan (축류팬의 유동소음 정확도 향상을 위한 수치해석에 관한 연구)

  • Jean, Wan-Ho;Lim, Tae-Gyun;Minorikawa, Gaku
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.311-318
    • /
    • 2013
  • The paper describes the prediction method for the unsteady flow field and the aeroacoustic noise of an small axial fan. The prediction method is comprised of various CFD conditions and acoustic analogy by using Ffowcs Williams-Hawkings equation. The diameter of tested axial fan is 170 mm and number of blade is 5. Virtual anechoic room which has same size with real one was used for CFD. URANS and LES models were used. For mesh dependence study, a different mesh type was tested and optimized mesh was selected. Calculation conditions were also studied such as time step and turbulence model for accurate noise analysis. In this paper, we got optimum analysis conditions and computational results. The unsteady pressure fluctuation at given 4 points were compared between the measured data and computational results. Also, the predicted acoustic spectrum at 3 given microphone points were compared with measured ones.

  • PDF

Numerical Analysis of the Unsteady Subsonic Flow around a Plunging Airfoil

  • Lee, Kyungwhan;Kim, Jaesoo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.3
    • /
    • pp.201-209
    • /
    • 2013
  • Much numerical and experimental research has been done for the flow around an oscillating airfoil. The main research topics are vortex shedding, dynamic stall phenomenon, MAV's lift and thrust generation. Until now, researches mainly have been concentrated on analyzing the wake flow for the variation of frequency and amplitude at a low angle of attack. In this study, wake structures and acoustic wave propagation characteristics were studied for a plunging airfoil at high angle of attack. The governing equations are the Navier-Stokes equation with LES turbulence model. OHOC (Optimized High-Order Compact) scheme and 4th order Runge-Kutta method were used. The Mach number is 0.3, the Reynolds number is, and the angle of attack is from $20^{\circ}$ to $50^{\circ}$. The plunging frequency and the amplitude are from 0.05 to 0.15, and from 0.1 to 0.2, respectively. Due to the high resolution numerical method, wake vortex shedding and pressure wave propagation process, as well as the propagation characteristics of acoustic waves can be simulated. The results of frequency analysis show that the flow has the mixed characteristics of the forced plunging frequency and the vortex shedding frequency at high angle of attack.

A Study on High Cycle Temperature Fluctuation Caused by Thermal Striping in a Mixing Tee Pipe (혼합배관 내의 열 경계층 이동으로 인한 고주기 온도요동에 관한 연구)

  • Kim, Seoug-B.;Park, Jong-H.
    • The KSFM Journal of Fluid Machinery
    • /
    • v.10 no.5
    • /
    • pp.9-19
    • /
    • 2007
  • Fluid temperature fluctuations in a mixing tee pipe were numerically analyzed by LES model in order to clarify internal turbulent flows and to develope an evaluation method for high-cycle thermal fatigue. Hot and cold water with an temperature difference $40^{\circ}C$ were supplied to the mixing tee. Fluid temperature fluctuations in a mixing tee pipe is analysed by using the computational fluid dynamics code, FLUENT, Temperature fluctuations of the fluid and pipe wall measured as the velocity ratio of the flow in the branch pipe to that in the main pipe was varied from 0.05 to 5.0. The power spectrum method was used to evaluate the heat transfer coefficient. The fluid temperature characteristics were dependent on the velocity ratio, rather than the absolute value of the flow velocity. Large fluid temperature fluctuations were occurred near the mixing tee, and the fluctuation temperature frequency was random. The ratios of the measured heat transfer coefficient to that evaluated by Dittus-Boelter's empirical equation were independent of the velocity ratio, The multiplier ratios were about from 4 to 6.

Large Eddy Simulation for the investigation of Roll Development Process in a Solid Rocket Motor (고체로켓 내부에서의 Roll 발생 현상 3D LES)

  • Kim, Jong-Chan;Hong, Ji-Seok;Yeom, Hyo-Won;Moon, Hee-Jang;Kim, Jin-Kon;Sung, Hong-Gye
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.253-257
    • /
    • 2011
  • Vortex generation mechanism by inhibitor in a solid rocket motor have been investigated by 3D Large Eddy Simulation turbulent model. Most of the result of the present study are in good agreement with experimental data and previous numerical calculation. Vortex generation and breakdown behind inhibitor are periodically observed between inhibitor and nozzle head by flow-acoustic coupling mechanism. Vortex generation frequency is the same as the second-mode frequency in the motor. The roll shape vortex generation behind inhibitor induces non-uniform flow field at the nozzle entrance and its throat.

  • PDF