• Title/Summary/Keyword: LES(large eddy simulation)

Search Result 359, Processing Time 0.024 seconds

Slat Noise Source Modeling of Multi-element Airfoil in High-lift Configuration

  • Hwang, Seung Tae;Han, Chang Kyun;Im, Yong Taek;Kim, Jong Rok;Bae, Youngmin;Moon, Young J.
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.2
    • /
    • pp.197-205
    • /
    • 2017
  • We investigate the slat noise generation mechanism by using large-eddy simulation (LES) and simple source modeling based on linearized Euler equations. An incompressible LES of an MD 30P30N three-element airfoil in the high-lift configuration is conducted at $Re_c=1.7{\times}10^6$. Using the total derivative of the hydrodynamic pressure (DP/Dt) acquired from the incompressible LES, representative noise sources in the slat cove region are characterized in terms of simple sources such as frequency-specific monopoles and dipoles. Acoustic radiation around the 30P30N multi-element airfoil is effectively computed using the Brinkman penalization method incorporated with the linearized Euler equation. The directivity pattern of $p^{\prime}_{rms}$ at $r=20c_{slat}$ in the multiple sources is closely compared to that obtained by the application of the LES/Ffowcs-Williams and Hawking's methods to the entire flow field. The power spectrum of p' at ${\theta}=290^{\circ}$ is in good agreement with the data reported in BANC-III, especially the broadband part of the spectrum with a decaying slope ${\propto}f^{-3}$.

LES for Turbulent Duct Flow with Mass injection (덕트내부에서 질량분사가 있는 난류유동의 LES 해석)

  • Kim, Bo-Hoon;Na, Yang;Lee, Chang-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.210-213
    • /
    • 2010
  • Recent experimental data shows that the noticeable feature of irregular roughened spots on the fuel surface occurs during the combustion test. The generation of these unexpected patterns is likely to be resulted from the disturbed boundary layer due caused by wall blowing which is intended to simulate the process of fuel vaporization. LES without chemical reaction was conducted to investigate the flow characteristics at the near-fuel surface and the behavior of turbulent structures which is evolved by the wall blowing at the Reynolds number of 23,000. Cylindrical geometry was considered to get the most reality of the calculation results because real hybrid rocket motor is circular grain configuration. It was shown that the wall blowing pushed turbulent structures upwards making them tilted and this skewed displacement, in effect, left the foot prints of the structures on the surface. This change of kinematics may explain the formation of irregular isolated spots on the fuel surface observed in the experiment.

  • PDF

On Reasonable Boundary Condition for Inclined Seabed/Structure in Case of the Numerical Model with Quadrilateral Mesh System (사각격자체계 수치모델에서의 경사면 처리기법에 관하여)

  • Hur, Dong-Soo;Lee, Woo-Dong;Bae, Ki-Seong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.5B
    • /
    • pp.591-594
    • /
    • 2008
  • Present study aims at the development of a reasonable boundary condition for a structure over inclined seabed in case of the numerical model with quadrilateral mesh system. The technique for the inclined impermeable/permeable boundary in the quadrilateral mesh is newly proposed. The new technique and LES-WASS-3D model (Hur and Lee, 2007) have been used for the investigation of the dynamics of fluid field, and validated through the comparison with a typical stair-type boundary condition. 3-Dimensional numerical model with Large Eddy Simulation is called LES-WASS-3D, and is able to simulate directly interaction of WAve Structure Sea bed/Sandy beach.

Internal Wave Generation with the Mass Source Function (질량 원천항을 이용한 내부조파)

  • Ha, Taemin;Cho, Yong-Sik
    • 한국방재학회:학술대회논문집
    • /
    • 2011.02a
    • /
    • pp.59-59
    • /
    • 2011
  • 파랑의 전파와 변형에 대한 연구에는 수심방향으로 적분한 2차원방정식인 완경사방정식과 Boussinesq 방정식을 기반으로 한 수치모형을 이용한 연구가 최근까지 가장 활발하게 진행되어 오고 있다. 그러나 실제 구조물의 설계에는 2차원 수치모형에서 고려할 수 없는 수심방향 유속에 기인한 정확도의 문제로 인해 구조물의 형상과 재원을 설계하기 위한 정교한 수치모형실험이 어려워 주로 수리모형실험에 의존해 왔다. 수리모형실험은 실제 현상을 가장 잘 재현해낼 수 있어 신뢰성이 매우 높지만 다양한 실험을 수행하기가 어렵고 많은 시간과 비용이 소요되는 단점이 있다. 이에 따라 최근 수심방향으로 완전한 운동방정식인 Navier-Stokes 방정식을 푸는 3차원 수치모형에 대한 연구가 활발히 진행되고 있다. 이론적으로 매우 우수한 모형이긴 하나 정확도 높은 결과를 얻기 위해서는 매우 조밀한 격자를 필요로 하기 때문에 아직까지 막대한 계산시간이 필요하다는 단점이 있으나 컴퓨터 기술이 급격한 속도로 발전하고 있어 Navier-Stokes 방정식 모형의 적용 가능성은 계속 높아지고 있다. 파랑변형을 다루는 수치모형실험을 수행할 때 외부조파를 사용할 경우 구조물이나 지형에 의해 반사되어 나온 파랑이 조파지점에 도달할 때 실험영역으로 재 반사되는 문제가 발생한다. 이를 해결하기 위해 내부조파기법의 개발에 대한 연구가 필수적이었으며, 자유수면변위를 변수로 사용하는 모형의 경우 그 연구가 매우 활발하게 진행되어 왔다. 한편, Navier-Stokes 방정식 모형의 경우 자유수면변위를 변수로 사용하는 2차원 모형에 비해 상대적으로 연구가 미흡하였다. 본 연구에서는 기존의 연직 2차원 Navier-Stokes 방정식 모형에 사용된 연속방정식에 질량 원천항을 추가하는 내부조파기법을 도입하여 3차원 수치모형에서 고립파를 내부조파하고, 급경사에서의 고립파의 처오름 및 처내림 현상을 수리모형 실험결과와 비교 및 분석하였다. 수치모형은 Navier-Stokes 방정식을 엇갈림 격자체계에서 계산하는 동수압 모형으로서, Two-step projection 기법을 사용하는 유한차분모형을 사용하였다. 본 수치모형은 난류의 해석을 위해서 상대적으로 큰 에디(eddy)만을 고려하는 SANS(spatially averaged Navier-Stokes) 방정식을 계산하는 LES(large-eddy-simulation) 기반의 수치모형으로, 난류 모델링을 위해 Smagorinsky LES 모형을 사용한다. 또한, 압력장의 계산을 위해 Bi-CGSTAB 기법을 이용하여 Poisson 방정식의 해를 구하였으며, 자유수면 추적을 위하여 2차 정확도의 VOF(volume-of-fluid) 기법을 사용하였다. 수치모형실험이 전체적으로 수리모형실험에서 관측한 파랑의 처오름 및 처내림 현상을 잘 재현하고 있는 것으로 나타났으며, 정량적인 비교를 통해 수치모형의 성능을 검증하였다.

  • PDF

The Phase Difference Effects on 3-D Structure of Wave Pressure Acting on a Composite Breakwater (혼성방파제에 작용하는 3차원 파압구조에 미치는 위상차의 영향)

  • Hur, Dong-Soo;Yeom, Gyeong-Seon;Bae, Ki-Seong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5B
    • /
    • pp.563-572
    • /
    • 2006
  • In designing the coastal structures, the accurate estimation of wave forces on them is very important. Recently, the empirical formulae such as Goda formula are widely used to estimate wave forces, as well as 2-D hydraulic and numerical model tests. But, sometimes, these estimation methods mentioned above seem to be unreasonable to predict 3-D structure of wave pressure on the coastal structures with 3-D plane arrangement in the real coastal area. Especially, in case of consideration of phase difference at harbor and seaward sides of the large-sized coastal structures like a composite breakwater, it is easily expected that the real wave pressures on each section of coastal structure have 3-D distribution. A new numerical model of 3-D Large Eddy Simulation, which is applicable to permeable structure, is developed to clarify the 3-D structure of wave pressures acting on coastal structure. The calculated wave forces on 3-D structure installed on the submerged breakwater show in good agreement with the measured values. In this study, the composite breakwater is adopted as a representative structure among the large-sized coastal structures and the 3-D structure of wave pressures on it is discussed in relation to the phase difference at harbor and seaward sides of it due to wave diffraction and transmitted wave through rubble mound.

Development of a Cartesian-based Code for Effective Simulation of Flow Around a Marine Structure - Integration of AMR, VOF, IBM, VIV, LES (효율적인 해양구조물 유동 해석을 위한 직교좌표계 기반의 코드 개발 - AMR, VOF, IBM, VIV, LES의 통합)

  • Lee, Kyongjun;Yang, Kyung-Soo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.5
    • /
    • pp.409-418
    • /
    • 2014
  • Simulation of flow past a complex marine structure requires a fine resolution in the vicinity of the structure, whereas a coarse resolution is enough far away from it. Therefore, a lot of grid cells may be wasted, when a simple Cartesian grid system is used for an Immersed Boundary Method (IBM). To alleviate this problems while maintaining the Cartesian frame work, we adopted an Adaptive Mesh Refinement (AMR) scheme where the grid system dynamically and locally refines as needed. In this study, We implemented a moving IBM and an AMR technique in our basic 3D incompressible Navier-Stokes solver. A Volume Of Fluid (VOF) method was used to effectively treat the free surface, and a recently developed Lagrangian Dynamic Subgrid-scale Model (LDSM) was incorporated in the code for accurate turbulence modeling. To capture vortex induced vibration accurately, the equation for the structure movement and the governing equations for fluid flow were solved at the same time implicitly. Also, We have developed an interface by using AutoLISP, which can properly distribute marker particles for IBM, compute the geometrical information of the object, and transfer it to the solver for the main simulation. To verify our numerical methodology, our results were compared with other authors' numerical and experimental results for the benchmark problems, revealing excellent agreement. Using the verified code, we investigated the following cases. (1) simulating flow around a floating sphere. (2) simulating flow past a marine structure.

Analysis of Radial Air-shear Force on Magnetic Disks for Reducing the Spin-off of Lubricants

  • Kurita, M.;Shimizu, H.;Mizumoto, M.;Ootani, Y.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.281-282
    • /
    • 2002
  • To reduce the spin-off of lubricants on a magnetic disk, which is caused by the radial component of shear force between the disk and air, we analyzed the air-velocity distribution and the air-shear force by three-dimensional large-eddy simulation (LES). This sensitivity analysis, on five design parameters, showed that disk/arm clearance and arm thickness have a greater effect on the mean radial air-shear force than the other parameters. The force on a disk optimized according to the optimum parameters is 12% less than the force on a conventional disk.

  • PDF

Investigation of wind-turbine wake characteristics in ideal turbulent inflow (이상 난류 조건에서의 풍력 터빈 후류 특성 연구)

  • Na, Jisung;Ko, Seungchul;Lee, Joon Sang
    • Journal of the Korean Society of Visualization
    • /
    • v.15 no.3
    • /
    • pp.47-51
    • /
    • 2017
  • In this study, we investigate the wake characteristics in laminar inflow and two different turbulent inflow cases. To solve the flow with wind turbines and its wake, we use large eddy simulation (LES) technique with actuator line method (ALM) and turbulent inflow of Turbsim. We perform the quantitative analysis of velocity deficit and turbulent intensity in laminar inflow case and turbulent inflow case with different turbulent intensity. In turbulent inflow, unsteady strong wake recovery which is highly fluctuated in time. Normalized power in turbulent inflow case is also highly fluctuated with unsteady wake recovery, while that in laminar inflow has quasi steady characteristic in power generation.

On the Large Eddy Simulation of Temperature Field Using Dynamic Mixed Model in a Turbulent Channel (동적혼성 모델을 이용한 난류채널의 온도장 해석)

  • Lee Gunho;Na Yang
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.10
    • /
    • pp.1255-1263
    • /
    • 2004
  • An a priori test has been conducted for the dynamic mixed model which was generalized for the prediction of passive scalar field in a turbulent channel flow The results from a priori tests indicated that dynamic mixed model is capable of predicting both subgrid-scale heat flux and dissipation rather accurately. The success is attributed to the explicitly calculated resolved term incorporated into the model. The actual test of the model in a LES a posteriori showed that dynamic mixed model is superior to the widely used dynamic Smagorinsky model in the prediction of temperature statistics.

Flow and Temperature Characteristics in a Circular Impinging Jet (원형 충돌 제트에서의 유동 및 온도 특성)

  • Kim Jungwoo;Choi Haecheon
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.237-240
    • /
    • 2002
  • In the present study, we perform LES of turbulent flow and temperature fields in a circular impinging jet at Re=5000 for two cases of H/D=2 and 6 (H denotes the distance between the jet exit and flat plate, and D does the diameter of the jet exit). In the case of H/D=2, the regular vortical structures observed in free jet do not exist because of the smaller distance than the potential core. The Nusselt number on the wall is largest at $r/D{\cong}10.67$ where vortex rings Impinge. At $r/D{\cong}1.5{\~}2.0$, the vortex rings induce the secondary vortices, resulting in a secondary peak in the Nusselt number there. In the case of H/D=6, the vortex rings change into three-dimensional vortical structures and the small-scale vortices impinge on the flat plate. The increase of turbulent intensity due to small-scale vortices results in the largest Nusselt number at the stagnation point.

  • PDF