• 제목/요약/키워드: LES(large eddy simulation)

검색결과 359건 처리시간 0.024초

Experimental and numerical studies of the flow around the Ahmed body

  • Tunay, Tural;Sahin, Besir;Akilli, Huseyin
    • Wind and Structures
    • /
    • 제17권5호
    • /
    • pp.515-535
    • /
    • 2013
  • The present study aims to investigate characteristics of the flow structures around the Ahmed body by using both experimental and numerical methods. Therefore, 1/4 scale Ahmed body having $25^{\circ}$ slant angle was employed. The Reynolds number based on the body height, H and the free stream velocity, U was $Re_H=1.48{\times}10^4$. Investigations were conducted in two parts. In the first part of the study, Large Eddy Simulation (LES) method was used to resolve the flow structures around the Ahmed body, numerically. In the second part of the study the particle image velocimetry (PIV) technique was used to measure instantaneous velocity fields around the Ahmed body. Time-averaged and instantaneous velocity vectors maps, streamline topology and vorticity contours of the flow fields were presented and discussed in details. Comparison of the mean and turbulent quantities of the LES results and the PIV results with the results of Lienhart et al. (2000) at different locations over the slanted surface and in the wake region of the Ahmed body were also given. Flow features such as critical points and recirculation zones in the wake region downstream of the Ahmed body were well captured. The spectra of numerically and experimentally obtained stream-wise and vertical velocity fluctuations were presented and they show good consistency with the numerical result of Minguez et al. (2008).

가스발생기 비-반응 유동의 난류 혼합에 대한 LES 해석 (LES of Turbulent Mixing of Non-Reactive Flow in Gas Generator)

  • 이창진
    • 한국항공우주학회지
    • /
    • 제36권12호
    • /
    • pp.1171-1179
    • /
    • 2008
  • 난류고리와 스플래쉬 판에 의한 난류 혼합과 난류 생성에 관한 연구를 위하여 LES 해석이 가능한 CFD 코드를 개발하였으며 이를 사용하여 LES 해석을 수행하였다. 계산 결과에 의하면 난류고리는 유동장에 매우 강한 난류를 생성하여 후류에서 난류 혼합을 촉진하는 역할을 담당하는 것으로 밝혀졌다. 한편 난류고리 후류 방향으로 스플래쉬 판을 설치하면 난류고리만을 설치한 경우와 매우 다른 형태의 난류 에너지와 엔스트로피 생성을 관찰할 수 있었다. 이 경우의 난류혼합은 판 뒤에 생성되는 매우 강하며 집중적인 난류의 생성에 의하여 이루어지며 압력강하는 초기 압력의 1% 수준으로 매우 낮았다. 또한 계산결과에 의하면 난류고리의 형상이나 돌출 길이 변화는 생성되는 난류의 특성에 매우 커다란 영향을 미치지 못하였다. 난류 혼합을 가장 효과적으로 이룰 수 있는 판의 위치에 관한 연구 는 진행하지 못하였으나 지금까지 계산결과에 의하면 스플래쉬 판이 설치되었을 때 압력 강하도 낮은 수준이며 난류 혼합이 가장 효과적임을 알 수 있었다.

Study of random characteristics of fluctuating wind loads on ultra-large cooling towers in full construction process

  • Ke, S.T.;Xu, L.;Ge, Y.J.
    • Wind and Structures
    • /
    • 제26권4호
    • /
    • pp.191-204
    • /
    • 2018
  • This article presents a study of the largest-ever (height = 220 m) cooling tower using the large eddy simulation (LES) method. Information about fluid fields around the tower and 3D aerodynamic time history in full construction process were obtained, and the wind pressure distribution along the entire tower predicted by the developed model was compared with standard curves and measured curves to validate the effectiveness of the simulating method. Based on that, average wind pressure distribution and characteristics of fluid fields in the construction process of ultra-large cooling tower were investigated. The characteristics of fluid fields in full construction process and their working principles were investigated based on wind speeds and vorticities under different construction conditions. Then, time domain characteristics of ultra-large cooling towers in full construction process, including fluctuating wind loads, extreme wind loads, lift and drag coefficients, and relationship of measuring points, were studied and fitting formula of extreme wind load as a function of height was developed based on the nonlinear least square method. Additionally, the frequency domain characteristics of wind loads on the constructing tower, including wind pressure power spectrum at typical measuring points, lift and drag power spectrum, circumferential correlations between typical measuring points, and vertical correlations of lift coefficient and drag coefficient, were analyzed. The results revealed that the random characteristics of fluctuating wind loads, as well as corresponding extreme wind pressure and power spectra curves, varied significantly and in real time with the height of the constructing tower. This study provides references for design of wind loads during construction period of ultra-large cooling towers.

잠제 설치 연안의 처오름 높이 특성 : PART I - 잠제의 평면배치에 의한 영향 (Characteristics of Run-up Height over Sandy Beach with Submerged Breakwaters : PART I - Effect of Plane Arrangement of Submerged Breakwaters)

  • 허동수;이우동
    • 대한토목학회논문집
    • /
    • 제28권3B호
    • /
    • pp.345-354
    • /
    • 2008
  • 본 연구에서는 잠제의 평면배치형상(이안거리, 개구율)에 따라 해빈상을 전파하는 풍파의 처오름 높이 변화특성을 논의하기 위하여, 파 투과성구조물 해빈의 상호간섭을 직접해석할 수 있는 3D-수치모델(LES-WASS-3D; 허와 이, 2007)을 이용하였다. 먼저, 기존의 수리모형 실험치와 본 연구의 계산치를 비교 검토하여 이용한 수치모델의 타당성 및 유효성을 검증한 후, 잠제 2기의 평면배치의 변화에 따른 수치시뮬레이션을 실시하였다. 결과로서 얻어진 잠제 주변의 파고분포 및 상층흐름 특성 등과 관련하여 연안에서의 처오름 높이를 검토한 결과, 처오름 높이 감소에 효율적인 잠제의 이안거리는 $Y/L_i=1.50{\sim}1.75$, 개구율은 $W/L_r=0.50$인 것을 확인하였다.

사각형 둔각물체 주위의 유동장 특성에 관한 수치적 연구 (Numerical Study on the Isothermal Flow Field abound Rectangular Cross Section Bluff Body)

  • 이정란;이의주
    • 한국안전학회지
    • /
    • 제27권5호
    • /
    • pp.35-41
    • /
    • 2012
  • The Numerical simulation was performed on the flow field around the two-dimensional rectangular bluff body in order to complement the previous experimental results of the bluff body stabilized flames [1]. For both fuel ejection configurations against an oxidizer stream, the flame stability was affected mainly by vortex structure and mixing field near bluff body. FDS(Fire Dynamic Simulator) based on the LES(Large Eddy Simulation) was employed to clarify the isothermal mixing characteristic and wake flow pattern around bluff body. The air used atmosphere and the fuel used methane. The result of counter flow configuration shows that the flow field depends on air velocity but the mixing field is influenced on the fuel velocity. At low fuel velocity the fuel mole fraction is below the flammable limit and hence the mixing is insufficient to react. Therefore, as the result, the flame formed at low fuel velocity is characterized by non-premixed flames. For the flow field of co-flow configuration, flame stability was affected by fuel velocity as well as air velocity. the vortex generated by fuel stream has counter rotating direction against the air stream. Therefore, the momentum ratio between air and fuel stream was important to decide the flame blow out limit, which is result in the characteristic of the partially premixed reacting wake near extinction.

Aerodynamic characteristics investigation of Megane multi-box bridge deck by CFD-LES simulations and experimental tests

  • Dragomirescu, Elena;Wang, Zhida;Hoftyzer, Michael S.
    • Wind and Structures
    • /
    • 제22권2호
    • /
    • pp.161-184
    • /
    • 2016
  • Long-span suspension bridges have evolved through the years and with them, the bridge girder decks improved as well, changing their shapes from standard box-deck girders to twin box and multi-box decks sections. The aerodynamic characteristics of the new generation of twin and multiple-decks are investigated nowadays, to provide the best design wind speeds and the optimum dimensions such bridges could achieve. The multi-box Megane bridge deck is one of the new generation bridge decks, consisting of two side decks for traffic lanes and two middle decks for railways, linked between them with connecting beams. Three-dimensional CFD simulations were performed by employing the Large Eddy Simulation (LES) algorithm with a standard Smagorinsky subgrid-scale model, for $Re=9.3{\times}10^7$ and angles of attack ${\alpha}=-4^{\circ}$, $-2^{\circ}$, $0^{\circ}$, $2^{\circ}$ and $4^{\circ}$. Also, a wind tunnel experiment was performed for a scaled model, 1:80 of the Megane bridge deck section, for $Re=5.1{\times}10^5$ and the aerodynamic static coefficients were found to be in good agreement with the results obtained from the CFD-LES model. However the aerodynamic coefficients determined individually, from the CFD-LES model, for each of the traffic and railway decks of the Megane bridge, varied significantly, especially for the downstream traffic deck. Also the pressure distribution and the effect of the spacing between the connecting beams, on the wind speed profiles showed a slight increase in turbulence above the downstream traffic and railway decks.

Numerical Simulation of the Formation of Linear Dunes

  • ZHANG Ruyan;SATO Yuko;KAN Makiko;KAWAMURA Tetuya
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2003년도 The Fifth Asian Computational Fluid Dynamics Conference
    • /
    • pp.211-212
    • /
    • 2003
  • Three dimensional flow above a sand dune has been studied numerically by using Large-Eddy Simulation (LES) method. The movement of the sand which is formed by converging wind directions has been investigated. The numerical method employed in this study can be divided into three parts: (i) calculation of the air flow above the sand dune using MAC method with a generalized coordinate system; (ii) estimation of the sand transfer caused by the flow through the friction; (iii) determination of the shape of the sand surface. Since the computational area has been changed due to step (iii), (i)­(iii) are repeated. The simulated dune, which has initially elliptic cross section, extending at the converging direction which is known as linear dunes.

  • PDF

CFD prediction of vortex induced vibrations and fatigue assessment for deepwater marine risers

  • Kamble, Chetna;Chen, Hamn-Ching
    • Ocean Systems Engineering
    • /
    • 제6권4호
    • /
    • pp.325-344
    • /
    • 2016
  • Using 3D computational fluid dynamics techniques in recent years have shed significant light on the Vortex Induced Vibrations (VIV) encountered by deep-water marine risers. The fatigue damage accumulated due to these vibrations has posed a great concern to the offshore industry. This paper aims to present an algorithm to predict the crossflow and inline fatigue damage for very long (L/D > $10^3$) marine risers using a Finite-Analytical Navier-Stokes (FANS) technique coupled with a tensioned beam motion solver and rainflow counting fatigue module. Large Eddy Simulation (LES) method has been used to simulate the turbulence in the flow. An overset grid system is employed to mesh the riser geometry and the wake field around the riser. Risers from NDP (2003) and Miami (2006) experiments are used for simulation with uniform, linearly sheared and non-uniform (non-linearly sheared) current profiles. The simulation results including inline and crossflow motion, modal decomposition, spectral densities and fatigue damage rate are compared to the experimental data and useful conclusions are drawn.

집진기내 입자 포집과 비산 문제에 대한 수치적 연구 (Numerical Study of Particle Collection and Entrainment in Electrostatic Precipitator)

  • 김주현;권순철;권기환;이상환;이주희
    • 한국유체기계학회 논문집
    • /
    • 제15권1호
    • /
    • pp.27-35
    • /
    • 2012
  • A numerical simulation for particle collection efficiency in a wire-plate electrostatic precipitator (ESP) has been performed. Method of characteristics and finite differencing method (MOC-FDM) were employed to obtain electric field and space charge density, and lattice boltzmann method (LBM) was used to predict the Electrohydrodynamic (EHD) flow according to the ion convection. Large eddy simulation (LES) was considered for turbulent flow and particle simulation was performed by discrete element method (DEM) which considered field charging, electric force, drag force and wall-collision. One way coupling from FDM to LBM was used with small and low density particle assumption. When the charged particle collided with the collecting plate, particle-wall collision was calculated for re-entertainment effect and the effect of gravity force was considered.

화재 성장 모델이 객차내 화재 특성에 미치는 영향에 관한 수치해석적 연구 (A Numerical Study of the Effect off Fire Growth Model on Fire Characteristics in a Carriage)

  • 김성찬;유홍선;최영기;김동현
    • 한국철도학회논문집
    • /
    • 제7권3호
    • /
    • pp.180-185
    • /
    • 2004
  • The present study investigates the effect of fire growth model on fire development characteristics in a carriage. The parallel processing version of FDS code is used to simulate the fire driven flow in a carriage and two types of fire growth model which are flame spread model and t$^2$ model are examined for the same geometrical condition. The heat release rates(HRR) of both model are similar each other until 30 s after ignition, but the flame spread model predicts 5 times higher than those of the t$^2$ fire model during the quasi-steady fire period. Maximum heat release rate in the case of flame spread model reaches about to 12 MW at 100 s after fire ignition. Also, various database of fire properties for combustible materials and more elaborate combustion model considering the flame spreading phenomena are required for better predictions of fire development characteristics using numerical simulation.