• 제목/요약/키워드: LED-driving power converter

검색결과 35건 처리시간 0.025초

전류제한 기능을 갖는 72[W ]급 파워 LED 태양광 보안등 (72[W] Power LED Photovoltaic Lighting System including the Current Limiting Function)

  • 박효식;한우용
    • 한국산학기술학회논문지
    • /
    • 제11권8호
    • /
    • pp.2999-3004
    • /
    • 2010
  • LED는 다른 광원에 비해 동작수명이 길고, 친환경적이며, 에너지 효율이 높은 장점을 가지고 있다. 최근 LED 기술의 발전으로 인해 고휘도, 고용량의 LED가 개발됨에 따라, 표시장치에만 적용되던 LED를 조명장치에도 적용하는 기술이 확산되고 있다. 조명장치에 적용되는 파워 LED는 발열문제로 인한 소손을 막기 위해 구동전류를 일정한 전류값 이하로 제어할 필요성이 있다. 본 논문은 파워 LED의 구동전류를 설정된 값 이하로 제어하는 전류제 한 기능을 갖는 파워 LED 태양광 보안등 개발에 관한 연구이다. 태양광 발전에 의해 생산된 전력을 DC12[V] 축전지에 저장한 후, 야간에 승압형 DC-DC 컨버터를 통해 DC24[V]로 승압시켜 파워 LED로 공급한다. 태양광 보안등 제어기, 승압형 DC-DC 컨버터, 72[W]급 파워 LED 램프를 개발하여 동작을 확인하고 관련 데이터를 도출함으로써 제안된 시스템의 타당성을 입증하였다.

Sliding Mode Current Controller Design for Power LEDs

  • Kim, Eung-Seok;Kim, Cherl-Jin
    • Journal of Electrical Engineering and Technology
    • /
    • 제6권1호
    • /
    • pp.104-110
    • /
    • 2011
  • High-brightness LED control is required for stable operation, thus the driver and control system must be designed to deliver a constant current to optimize reliability and ensure consistent luminous flux. In this paper, the sliding mode current controller is designed to adjust the illumination density of power LEDs. The controller design model of power LEDs, including its driving circuit, is proposed to realize the dimming control of power LEDs. A buck converter is introduced to drive the power LEDs and reduce the input voltage to a lower level. The sliding mode software controller is implemented to adjust the dimming of power LEDs. The proposed strategy for driving power LEDs is investigated and comparatively studied by experiments.

탭인덕터 부스트 컨버터를 이용한 LED-드라이버 설계 (Design of the Tapped-Inductor Boost Converter for LED Backlights Driving)

  • 정지욱;박동서;이효길;박신균
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2013년도 전력전자학술대회 논문집
    • /
    • pp.177-179
    • /
    • 2013
  • This paper presents an LED driver which requires a high voltage gain (5-6 times). To achieve a high voltage gain, the tapped-inductor boost converter topology was used and through the analysis of converter's steady-state and its dynamic characteristics, the product design's reliability and validity were verified.

  • PDF

New Driving Method of High Brightness LED Backlight Using Active Current Source

  • Hwang, S.;LEE, J.;Lim, S.;Oh, M.H.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2007년도 7th International Meeting on Information Display 제7권2호
    • /
    • pp.1642-1645
    • /
    • 2007
  • The brightness of LED changes according to the current flowing through LEDs. The current mirror was used to drive LEDs effectively. The reference current of the current mirror was usually controlled by the resistor but the size of this resistor is very large and this resistor consumes too much power for high power LED backlight driving. The reference current of the current mirror LED driver was controlled by using flyback converter at small size with low power consumption in this paper. The concept of active current source was presented.

  • PDF

LED Backlight Driving Circuits and Dimming Method

  • Kwon, Oh-Kyong;Jung, Young-Ho;Lee, Yong-Hak;Cho, Hyun-Suk;Nam, Ki-Soo;In, Hai-Jung
    • Journal of Information Display
    • /
    • 제11권4호
    • /
    • pp.173-181
    • /
    • 2010
  • In this paper, light-emitting-diode (LED) backlight driving circuits and dimming method for medium-sized and large liquid crystal displays (LCDs) are proposed. The double loop control method, the intelligent-phase-shifted PWM dimming method, the fast-switching current regulator, and the current matching techniques are proposed to improve not only the current regulation characteristics and the power efficiency but also the current matching characteristics and the transient response of the LED current. The brightness of the backlight using the proposed local dimming method was determined from the histogram of the local block to reduce the power consumption of the backlight without image distortion. The measured maximum power efficiency of the LED backlight driving circuit for medium-sized LCDs was 90%, and the simulation results showed an 88% maximum power efficiency of the LED backlight driving circuit for large LCDs. The maximum backlight power-saving ratio of the proposed dimming method was 41.7% in the simulation with a high-contrast image. The experiment and simulation results showed that the performance of LEDs as LCD backlight units (BLUs) improved with the proposed circuits and method.

선택적 충전방식 전하펌프를 사용한 LED 램프 조광구동 기술 (Driving Method for Dimming of LED Lamps using Selectively Charged Charge Pump)

  • 김재현;윤장희;염정덕
    • 조명전기설비학회논문지
    • /
    • 제27권9호
    • /
    • pp.15-22
    • /
    • 2013
  • A new LED lamp driving technology with a charge pump instead of a conventional DC-DC converter is proposed. The proposed driving technology is used to control the LED lamp with digital dimming. The power loss in the zener diodes is reduced because the charging process of the capacitors is selectively controlled according to the digital control signal. From the experimental results, when dimming four LED lamps simultaneously, the average driving circuit efficiency of 89% is obtained, regardless of the dimming level. White light with color temperature over a range of 2800~7200K was produced by dimming control of red, green, blue and amber LED lamps with the proposed driving circuit. The characteristics of the driving circuits can be changed depending on the characteristics of the R, G, B, and A LED lamps. The efficiency of the driving circuits up to a maximum 89% can also be obtained depending on the combination of LED lamps. The driving technology with digital dimming control for LED lamps proposed in this paper would be effective for obtaining high efficiency in LED driving circuits and remote control of LED lamps using digital communications.

Single stage PFC flyback 컨버터의 전해커패시터용량저감기법 (The Method of Reducing the Output Electrolytic Capacitance in Single Stage PFC flyback Converter)

  • 김진구;박종연
    • 조명전기설비학회논문지
    • /
    • 제29권9호
    • /
    • pp.81-88
    • /
    • 2015
  • LED has been great attentions in lighting industry because of its long life-time, high efficiency, excellent light output characteristics. However, the life-time of the LED driving system is decreased because of the electrolytic capacitor which is used in the power conversion system for driving LED lighting. Therefore the capacitance reduction methods have been studied to replace an electrolytic capacitor with film or tantalum capacitor. This paper presents the Single stage PFC flyback converter with the simplified third harmonic current injection circuit to reduce output capacitance and the proposed system is theoretically analyzed and verified through the experiment.

Average Current Controlled X-Y Channel Driving White LED Backlight System for 46" LCD TV

  • Cho, Dae-Youn;Oh, Won-Sik;Cho, Kyu-Min;Moon, Gun-Woo;Yang, Byung-Choon;Jang, Tae-Seok
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2008년도 하계학술대회 논문집
    • /
    • pp.271-273
    • /
    • 2008
  • A novel white-LED (light emitting diode) backlight system for 46"LCD TVs which involves the average current controlled X-Y channel driving method is proposed, which is composed of 1 converter and row and column channel switches. In the conventional X-Y channel driving driven with a constant voltage source, the driving current of LED increases because the threshold voltage of LED decreases when LED temperature goes up. To maintain the luminance of backlight constant, the average current controlled X-Y channel driving will be employed. Finally the results are confirmed by experimental results.

  • PDF

파워 LED의 수학적 모델링 및 정전류 적응 제어기 설계에 관한 연구 (A Study on the Mathematical Modeling and Constant Current Adaptive Controller Design for Power LEDs)

  • 김응석;김영태
    • 조명전기설비학회논문지
    • /
    • 제25권9호
    • /
    • pp.8-13
    • /
    • 2011
  • In this paper, a mathematical model of the power LED system including the drive circuit will be presented to control the power LEDs current. Using this mathematical model, the constant current adaptive controller will be designed. A constant current drive circuit for power LEDs will be configured using Buck-type converter. Precise constant current controller design is enabled by presenting the mathematical model of power LEDs including the current driving circuits. Using the mathematical model of power LEDs and its drive circuits, the constant current adaptive controller will be designed to obtain the robustness for the parameter uncertainties. In order to verify the validity of the proposed controller, computer simulations are performed.

제어 방식에 따른 20 W급 LED Converter 설계 및 분석 (Design and Analysis of 20 W Class LED Converter Considering Its Control Method)

  • 정영기;김성현;박대희
    • 한국전기전자재료학회논문지
    • /
    • 제25권1호
    • /
    • pp.53-57
    • /
    • 2012
  • In this paper, by designing 20 W class driving circuit for driving high-power LED (Light Emitting Diode), we are going to comparatively carry out the analysis of characteristics for power circuit according to each design method. In this case, 200 V 60 Hz was performed as input data. The electrical characteristics such as voltage, current and ripple are checked for constant current circuit and constant voltage circuit in the LED module. In addition, as the ripple has an influence on illumination of LED light, low temperature working (-20 [$^{\circ}C$]) and high temperature working(80 [$^{\circ}C$]) are measured to make sure the ripple characteristics in accordance with temperature. In low temperature operation -20 [$^{\circ}C$] measurements, both constant current circuit and constant-voltage circuit were less impacted on input fluctuation, whereas in the high temperature operation 80 [$^{\circ}C$], current voltage in constant voltage circuit was surge after 430 [hour]. Voltage current ripple of constant current circuit was much less than constant voltage circuit, therefore we can show that constant current circuit is more stable.