• 제목/요약/키워드: LED sensor

검색결과 487건 처리시간 0.023초

안전성 강화를 위한 ESP32-CAM을 활용한 시각장애인용 스마트지팡이에 대한 연구 (Study on a Smart Cane for the Visually Impaired utilizing ESP32-CAM for Enhanced Safety)

  • 홍두현;임종환;유준선;백승협;김재욱
    • 한국전자통신학회논문지
    • /
    • 제18권6호
    • /
    • pp.1379-1386
    • /
    • 2023
  • 본 논문에서는 시각장애인을 위한 스마트 지팡이의 설계와 개발에 대해 다루고 있다. 스마트 지팡이는 초음파 거리 센서, 피에조부조, 조도 센서, LED선, 블루투스 모듈, 카메라 모듈, 스위치, 배터리 등의 센서와 모듈을 내장하고 있으며, 사용자가 지팡이를 사용하는 동안 주변 환경을 카메라로 실시간 스트리밍할 수 있고 보호자에게 공유할 수 있다. 스마트 지팡이는 초음파 거리 센서를 사용하여 앞에 있는 장애물의 거리를 측정하여 사용자에게 경고음을 울려줍니다. 블루투스 모듈과 스마트폰 앱을 이용하여 보호자에게 자신의 위치를 알려준다. 이러한 스마트 지팡이는 시각장애인이 일상생활에서 자신의 이동을 보다 안전하게 할 수 있도록 돕는데 큰 도움이 될 수 있다.

IoT Open-Source and AI based Automatic Door Lock Access Control Solution

  • Yoon, Sung Hoon;Lee, Kil Soo;Cha, Jae Sang;Mariappan, Vinayagam;Young, Ko Eun;Woo, Deok Gun;Kim, Jeong Uk
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제12권2호
    • /
    • pp.8-14
    • /
    • 2020
  • Recently, there was an increasing demand for an integrated access control system which is capable of user recognition, door control, and facility operations control for smart buildings automation. The market available door lock access control solutions need to be improved from the current level security of door locks operations where security is compromised when a password or digital keys are exposed to the strangers. At present, the access control system solution providers focusing on developing an automatic access control system using (RF) based technologies like bluetooth, WiFi, etc. All the existing automatic door access control technologies required an additional hardware interface and always vulnerable security threads. This paper proposes the user identification and authentication solution for automatic door lock control operations using camera based visible light communication (VLC) technology. This proposed approach use the cameras installed in building facility, user smart devices and IoT open source controller based LED light sensors installed in buildings infrastructure. The building facility installed IoT LED light sensors transmit the authorized user and facility information color grid code and the smart device camera decode the user informations and verify with stored user information then indicate the authentication status to the user and send authentication acknowledgement to facility door lock integrated camera to control the door lock operations. The camera based VLC receiver uses the artificial intelligence (AI) methods to decode VLC data to improve the VLC performance. This paper implements the testbed model using IoT open-source based LED light sensor with CCTV camera and user smartphone devices. The experiment results are verified with custom made convolutional neural network (CNN) based AI techniques for VLC deciding method on smart devices and PC based CCTV monitoring solutions. The archived experiment results confirm that proposed door access control solution is effective and robust for automatic door access control.

MOCVD법으로 성장한 ZnO 나노구조의 온도 의존성 (Temperature dependency of the ZnO nanostructures grown by metalorganic chemical vapor deposition)

  • 최미경;김동찬;공보현;김영이;안철현;한원석;;조형균;이주영;이종훈;김홍승
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 하계학술대회 논문집 Vol.9
    • /
    • pp.20-20
    • /
    • 2008
  • 최근 LEDs가 동일 효율의 전구에 비해 에너지 절감 효과 크며 신뢰성이 뛰어나다기 때문에 기존 광원을 빠르게 대체해 나가고 있다. 특히 자외선 파장을 가지는 LEDs는 발열이 낮아 냉각장치가 필요 없으며, 수명이 길어 기존 UV lamp에 비해 많은 장점을 가지고 있기 때문에 많은 관심을 밭고 있다. 그럼에도 불구하고 자외선 LEDs는 제조 단가가 높고 power가 낮아 소요량이 많은 등 아직 해결해야 할 부분이 많기 때문에 이를 해결하기 위해 여러가지 재료와 다양한 구조가 고려되고 있다. 그 중 ZnO는 II-VI족 화합물 반도체로써 UV영역의 넓은 밴드갭(3.37eV)을 가지는 투명한 재료이다. 특히 ZnO는 60meV의 큰 엑시톤 결합에너지를 가지며, 가시광 영역에서 높은 투과율을 가지고, 상온에서 물리적, 화학적으로 안정하기 때문에 UV sensor, UV laser, UV converter, UV LEDs 등 광소자 분야에서 연구가 활발히 진행되고 있다. ZnO가 광소자의 발광재료로써 높은 효율을 얻기 위해서는 결정성을 높여 내부 결함을 감소시키며, 발광 면적을 높일 수 있는 구조가 요구된다. 특히 MOCVD 법으로 성장한 나노막대는 에피성장되어 높은 결정성을 기대할 수 있으며, 성장 조건을 조절함으로써 나노막대의 aspect ratio와 밀도 제어할 수 있기 때문에 표면적을 효과적으로 넓혀 높은 발광효율을 얻을 수 있다. 본 실험에서는 MOCVD 법으로 실리콘과 사파이어 기판 위에 다양한 성장 온도를 가진 나노구조를 성장 시키고 온도에 따른 형상 변화와 특성을 평가하였다. ZnO 의 성장온도가 약 $360^{\circ}C$ 일 때, 밀도가 조밀하고 기판에 수직 배열한 균일한 나노막대가 성장되었으며 우수한 결정성, 광학적 특성이 나타남을 SEM, TEM, PL, XRD를 사용하여 확인하였다.

  • PDF

광섬유 브래그 격자의 방사선 민감도에 대한 수소로딩의 영향 (The Influence of Hydrogen Loading on Radiation Sensitivity of Fiber Bragg Gratings)

  • 김종열;이남호;정현규
    • 한국정보통신학회논문지
    • /
    • 제17권10호
    • /
    • pp.2461-2465
    • /
    • 2013
  • 본 논문은 광섬유 브래그 격자의 방사선 민감도에 대한 수소로딩 공정의 영향에 대해서 연구하였다. 게르마늄이 함유된 광섬유에 수소로딩 기간을 달리하여 광섬유 브래그 격자를 제작하였다. 광섬유 브래그 격자는 총 18 kGy 감마선에 조사하여 방사선에 의한 브래그 파장의 변화를 측정하였고, 방사선 조사 후에는 반치대역폭과 온도 감도 계수의 변화를 평가하였다. 수소로딩 조건에 따라서 방사선에 의한 브래그 파장의 변화는 약 2 배 이상의 차이를 보였다.

Medication Reminder System for Smart Aging Services Using IoT Platforms and Products

  • Sung, Nak-Myoung;Yun, Jaeseok
    • 한국컴퓨터정보학회논문지
    • /
    • 제22권9호
    • /
    • pp.107-113
    • /
    • 2017
  • In this paper, we propose a medication reminder system using IoT platforms and products to help old adults keep track of their medication schedule, one of 10 Korean instrumental activities in daily living (K-IADL). An interworking architecture based on the oneM2M standard platform is designed to allow various IoT products to be connected each other through interworking proxy entities. A prototype system for the medication reminder service is developed, which consists of a pair of off-the-shelf pill bottle and container box embedded with an NFC tag and reader respectively, three types of actuators including a LIFX LED lightbulb, Musaic speaker, Microsoft Band 2, and smartphone applications. The experiment shows that our medication reminder system can make alarms for old adults to take their pills appropriately considering where they are and when they have food inferred from data collected from sensors including ultrasonic sensor and rice cooker, fostering them to keep their medication routine.

LEAP 모델을 이용한 대학의 온실가스 배출량 및 감축잠재량 분석 (Estimation of GHG emission and potential reduction on the campus by LEAP Model)

  • 우정호;최경식
    • 환경영향평가
    • /
    • 제21권3호
    • /
    • pp.409-415
    • /
    • 2012
  • Post-kyoto regime has been discussing with the GHG reduction commitment. GHG energy target management system also has been applied for the domestic measures in the country. Universities are major emission sources for GHG. It is very important for campus to built the GHG inventory system and estimate the potential GHG emission reduction. In general, GHG inventory on the campus was taken by the IPCC guidance with the classification of scope 1, 2, and 3. Electricity was the highest portion of GHG emission on the campus as 5,053.90 $tonsCO_2eq/yr$ in 2009. Manufacturing sector was the second high emission and meant GHG in laboratory. Potential GHG reduction was planned by several assumptions such as installation of occupancy sensor, exchanging LED lamp and photovoltaic power generation. These reduction scenarios was simulated by LEAP model. In 2020, outlook of GHG emission was estimated by 17,435.98 tons of $CO_2$ without any plans of reduction. If the reduction scenarios was applied in 2020, GHG emission would be 16,507.60 tons of $CO_2$ as 5.3% potential reduction.

CAD 모델 기반 비접촉 기상 측정에 관한 연구 (Non-contacting OMM (On Machine Measurement) based on CAD Model)

  • 권세진;이정근;박정환;고태조;김선호
    • 한국정밀공학회지
    • /
    • 제20권11호
    • /
    • pp.134-141
    • /
    • 2003
  • An industrial product is designed and fabricated, followed by the inspection process in order to check whether it is dimensionally tolerable or not. The machining process produces a part such as a mold or die, in which the three-dimensional coordinate might be measured by a CMM (Coordinate Measuring Machine) for assessment of its dimension. It is not ignorable, however, that a CMM measurement requires a lot of operating time and cost, which has led to many studies on the OMM system. The OMM system can be categorized into contact and non-contact types, and each of which has its own strengths and weaknesses. Non-contacting types generally utilize structured lights, sounds or magnetic fields. Though they show rather poor performance in positional accuracy, the measuring speed is faster than the contacting probes. This paper presents the development of an OMM system based on a non-contacting laser displacement sensing apparatus and CAD model. The system is composed of software modules of center-aligning and measuring, which has been operated and verified on a NC machining center on a shop floor.

Fluorescence-Quenched Sensor for Trinitophenol in Aqueous Solution Based on Sulfur Doped Graphitic Carbon Nitride

  • Min, Kyeong Su;Manivannan, Ramalingam;Satheshkumar, Angu;Son, Young-A
    • 한국염색가공학회지
    • /
    • 제30권2호
    • /
    • pp.63-69
    • /
    • 2018
  • In this study, we report on successful attempt towards the synthesis of sulfur self-doped $g-C_3N_4$ by directly heating thiourea in air. The synthesized materials were characterized using UV-vis spectral technique, FT-IR, XRD and TEM analysis. Further, the obtained material shows an excellent detection of carcinogenic TNP(Tri nitro phenol) in the presence of 10-fold excess of various other common interferences. The strong inner filter effect and molecular interactions(electrostatic, ${\pi}-{\pi}$, and hydrogen bonding interactions) between TNP and the $S-g-C_3N_4$ Nano sheets led to the fluorescence quenching of the $S-g-C_3N_4$ Nano sheets with an excellent selectivity and sensitivity towards TNP compared to that of other nitro aromatics under optimal conditions and the detection limit calculated was found to be 6.324 nM for TNP. The synthesized nanocomposite provides a promising platform for the development of sensors with improved reproducibility and stability for ultra-sensitive and selective sensing of TNP.

소형화 및 저전력소모를 구현한 실시간 생체신호 측정기 개발 (A compact and low-power consumable device for continuous monitoring of biosignal)

  • 조정현;윤길원
    • 센서학회지
    • /
    • 제15권5호
    • /
    • pp.334-340
    • /
    • 2006
  • A compact biosignal monitoring device was developed. Electrodes for electrocardiogram (ECG) and a LED and silicon detector for photoplethysmogram (PPG) were used. A lead II type was arranged for ECG measurement and reflected light was measured at the finger tip for PPG. A single chip microprocessor (model ADuC812, Analog Device) controlled a measurement protocol and processed measured signals. PPG and ECG had a sampling rate of 300 Hz with 8-bit resolution. The maximum power consumption was 100 mW. The microprocessor computed pulse transit time (PTT) between the R-wave of ECG and the peak of PPG. To increase the resolution of PTT, analog peak detectors obtained the peaks of ECG and PPG whose interval was calculated using an internal clock cycle of 921.6 kHz. The device was designed to be operated by 3-volt battery. Biosignals can be measured for $2{\sim}3$ days continuously without the external interruptions and data is stored to an on-board memory. Our system was successfully tested with human subjects.

에너지 전달을 이용한 Polymetalloles의 응집에 의해 유도되는 광발광성의 증가 (Aggregation-induced photoluminescence enhancement of polymetalloles by energy migration)

  • 권형준;정대혁;송진우;장승현;김범석;권용희;조성동;손홍래
    • 센서학회지
    • /
    • 제15권5호
    • /
    • pp.303-308
    • /
    • 2006
  • Aggregation-induced emissions of polymetalloles have been investigated since they are very attractive in their possible optoelectronic applications such as P-LED's and Sensors. Size of nanoparticulates was measured by using scanning electron micrograph and was about 200-300 nm. Phenylmethylpolysilane (PMPS) and polymetalloles emit the light at 360 nm and 520 nm, respectively. However, the aggregates of polymetallole containing PMPS exhibit an enhanced emission band at 520 nm, indicating that the energy transfer occurs from PMPS to polymetalloles in aggregates. Emission intensity of PMPS/polymetallole nanoparticulates at 520 nm increases depending on the aliquot of PMPS.