• Title/Summary/Keyword: LED lighting power supply

Search Result 41, Processing Time 0.022 seconds

A Fully Digital Controlled Fly-back Single Stage Power Supply Unit for the Wireless Dimming System of LED Lightings

  • Oh, Yongseung;In, Chigak;Cho, Kyumin
    • Journal of Advanced Information Technology and Convergence
    • /
    • v.9 no.2
    • /
    • pp.75-87
    • /
    • 2019
  • This paper presents a fully digital controlled power supply unit for the wireless controlled dimmable LED lighting system. The proposed power supply designed using a fly-back converter, which is directly controlled by a microprocessor. Although the proposed circuit does not sense the AC input current and has not AC input voltage feed-forward, it can achieve a high power factor. The proposed power supply directly regulates the output power for LED loads using the PWM and PFM control of the fly-back converter without additional regulator. For a wireless remote control function, the Zigbee modem is equipped in the proposed power supply. A prototype set-up has been built and tested. Through the experiment with a prototype set-up, the usefulness of the proposed power supply is verified.

Study of Quasi-Resonant Flyback Power Supply for LED Lighting (LED 조명을 위한 준공진형 플라이백 컨버터에 대한 연구)

  • La, Jae-Du;Lee, Chun-Taek;In, Chi-Gak
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.980-981
    • /
    • 2015
  • A quasi-resonant flyback converter using a simple 8-bit microcontroller for a LED lighting is proposed in this paper. The proposed converter is easily and precisely controlled by the simple controller using a low-cost 8-bit microcontroller. Also, in order to operate the 8-bit microcontroller, the proposed converter system does not require any additional power supply for the controller. A prototype power supply is developed to supply a 270[W] LED lighting with the wide input voltage ranges ($175[V_{ac}]-265[V_{ac}]$). Experimental results will be show the practicality and validity of the proposed circuit.

  • PDF

A Study on the Efficiency of LED Lighting Applied by Direct AC Power Using Magnetic Resonance Wireless Power Transfer System (자계 공진 방식의 무선전력전송 장치를 이용한 교류 전력 직접 인가에 의한 LED 조명기기 효율에 관한 연구)

  • Park, Jeong-Heum
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.10
    • /
    • pp.15-20
    • /
    • 2013
  • In this paper, wireless power transfer system using the magnetic resonance was designed and applied to LED lighting for implementation of wireless lighting. This lighting was made by the converted DC driving type and the direct AC driving type. In the former, transferred AC power was rectified into DC and regulated to the specified voltage value, which leads to produce the loss at the rectifying and regulating circuit. In the latter, wireless-transferred AC power was directly applied to LED, which get rid of the loss derived from the additional circuit. For the efficiency-comparison between the former and the latter, the power at each stage was measured when the same optical output radiated from LED lighting part. The result revealed that the direct AC driving type had 18% higher efficiency than the DC driving type and confirmed that LED lighting using magnetic resonance wireless power transfer system can be efficient by direct AC power supply. And the direct AC driving type had the simple circuit structure and the simple LED lighting formation, so this can leads to various application.

A Study on the Efficiency of a High Power Factor LED Driver Circuit (고역률 LED 구동회로의 효율화에 관한 연구)

  • Lee, Dong Won;Kim, Byungcheul
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.8
    • /
    • pp.629-634
    • /
    • 2013
  • The rectified voltage supplied to LED lamp is used in load and then the surplus voltage can be produced in LED lighting. In this case, LED lighting is proposed that can recyclable the excess voltage to supply power to the controller.

Emotional Lives of Students in the Classroom Space LED Fluorescent Lamp for Sensitivity Lighting (학생들의 생활공간인 교실에 감성조명 적용을 위한 LED 형광등 개발연구)

  • Han, Sang-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.9
    • /
    • pp.3446-3450
    • /
    • 2010
  • This study aims to make class lighting that gives classroom to stability and activity. For the purpose, we develop a emotional lighting LED using LED source which is a environment-friendly and the lighting fo the next generation. We composed emotional lighting LED as controller for color conversion, power supply for supplying LED lamp a stable power, PCB board for LED lamp and lamp and case. We developed designed emotional lighting LED and proved that the system works and one can get intended color.

An Efficient Hybrid LED Street Lighting Management System Design using Standalone Solar Photovoltaic (독립형 태양광 발전을 이용한 효율적인 하이브리드 LED 가로등 조명관리 시스템 설계)

  • Hong, Sung-Il;Lin, Chi-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.9
    • /
    • pp.984-993
    • /
    • 2014
  • In this paper, we propose a design for an efficient hybrid LED street lighting management system using standalone solar photovoltaic. The proposed efficient hybrid LED street lighting management system was composed of hybrid power conditioning system, gateways, LED street lights and a monitoring server. The hybrid power conditioning system was designed to charge produced power by solar photovoltaic panels in day time, and supply power to the LED street lights in night time. If there is insufficient power, the system was designed to operate using firm power, because the system utilizes photovoltaic power. A system control algorithm allied to the lighting management system, and experimented by being configured to the functions that are able to perform real-time monitoring and remote control through the lighting management system even when absent. In the result of the efficiency analysis of the hybrid lighting management system proposed in this paper, we were able to increase the energy efficiency compared to existing lighting control systems by reducing power consumption and electricity costs.

Alternating Current (AC) Powered LED Lighting Technology with Constant Brightness (빛의 밝기가 일정한 교류 구동 LED 조명기술)

  • Lee, Dong Won;Ahn, Ho-Myoung;Kim, Byungcheul
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.5
    • /
    • pp.466-470
    • /
    • 2022
  • In order to widely disseminate LED lighting, LED lighting technology that directly uses AC commercial power has been recently introduced. AC powered LED lighting technology has a problem in that the light brightness of the LED changes because the voltage applied to the LED and the current flowing through the LED continuously change. In this study, when the LED current is greater than the design current, the current control signal generated by the controller is supplied to the current source to supply only the design current to the LED by increasing the voltage drop at the current source. If it is smaller than the design current, the controller is adjusted so that the current is supplied only to the LED without a voltage drop in the current source. It can be seen that the higher the maximum rectified voltage, the faster the lighting time of the LED light emitting block is, so that the power factor of the LED lighting is improved. The LED lighting technology proposed in this study enables LED lighting with constant light brightness, reduced power consumption, and long lifetime.

A Study on AC-Driven LED Lighting System with High Efficacy, and Heterogeneous power (고 효율, 이종 전원 지원 교류 구동 발광 다이오드 조명 연구 장치 개발)

  • Lim, Jun-hyung;Kim, Young-kil
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.05a
    • /
    • pp.555-558
    • /
    • 2017
  • In this paper, we designed a power supply AC LED driving device which can display uniform power consumption and light efficiency even when AC power of different size is applied. By setting input voltages and deviations of different sizes, it is confirmed that the electric light characteristics are the same at two input voltages. In addition, according to peak voltage of AC power, improper lighting caused in specific LED section is improved, and LED lighting of all sections is implemented in all commercial AC input voltage.

  • PDF

Alternating Current Input LED Lighting Control System using Fuzzy Theory

  • Lee, Jae-Kyung;Yim, Jae-Hong
    • Journal of information and communication convergence engineering
    • /
    • v.19 no.4
    • /
    • pp.214-220
    • /
    • 2021
  • In this study, we constructed several scenarios that are required for LED lighting, and we designed and implemented an LED lighting control system to operate these scenarios to confirm their behavior. An LED lighting control system is a hybrid control board that is designed by combining LED controllers and SMPS, consisting of an AC/DC power supply part that converts AC 220 V into DC 12 V, and a drive and control part that controls the scenario and color of the LED module. Conventional LED light controllers have an input power of DC 12 V, so when using the input AC 220 V, the SMPS must be connected to the LED light controller. To eliminate this inconvenience, a hybrid LED lighting control system was configured to combine LED lighting controllers and SMPS into one control system. Furthermore, we designed a control system to represent the most appropriate color according to the input of the distance and illumination using a fuzzy control system to conduct computer simulations.

An Experimental Study on Plant Factory System Applied Photovoltaic System and LED Lighting (태양전지와 LED 조명을 이용한 가정용식물공장 시스템 실증시험)

  • Yang, Jun-Woo;Chung, Dong-Yeol;Kim, Jeong-Yeol;Peck, Jong-Hyeon
    • Journal of Institute of Convergence Technology
    • /
    • v.3 no.1
    • /
    • pp.37-40
    • /
    • 2013
  • Plant factory industry as a new agriculture is in the spotlight. In this paper, we experimented plant factory applied photovoltaic system and LED lighting. For growing the plant, red, blue and white LED were placed into 1:4:3. Electric power generated by the photovoltaic system was supplied on DC power supply instead of AC. The designed and experimented power generation amount per day of photovoltaic system were 2,860 Wh and 2,272 Wh respectively. Plant has not been grown at the dead space of LED lighting so it is required to array LED lighting.

  • PDF