• Title/Summary/Keyword: LED chip package

Search Result 50, Processing Time 0.027 seconds

Study on the Thermal Dissipation Characteristics of 16-chip LED Package with Chip Size (16칩 LED 패키지에서 칩 크기에 따른 방열특성 연구)

  • Lee, Min-San;Moon, Cheol-Hee
    • Journal of the Korean Vacuum Society
    • /
    • v.21 no.4
    • /
    • pp.185-192
    • /
    • 2012
  • p-n junction temperature and thermal resistance of Light Emitting Diode (LED) package are affected by the chip size due to the change of the thermal density and the external quantum efficiency considering the heat dissipation through conduction. In this study, forward voltage was measured for two different size LED chips, 24 mil and 40 mil, which consist constitute 16-chip package. p-n junction temperature and thermal resistance were determined by thermal transient analysis, which were discussed in connection with the electrical characteristics of the LED chip and the structure of the LED package.

Thermal Dissipation Characteristics of Multi-Chip LED Packages (멀티 칩 LED 패키지의 방열 특성)

  • Kim, Byung-Ho;Moon, Cheol-Hee
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.12
    • /
    • pp.34-41
    • /
    • 2011
  • In order to understand the thermal performance of each LED chips in multi-chip LED package, a quantitative parametric analysis of the temperature evolution was investigated by thermal transient analysis. TSP (Temperature Sensitive Parameter) value was measured and the junction temperature was predicted. Thermal resistance between the p-n junction and the ambient was obtained from the structure function with the junction temperature evolution during the cooling period of LED. The results showed that, the thermal resistance of the each LED chips in 4 chip-LED package was higher than that of single chip- LED package.

Reliability Testing and Materials Evaluation of Si Sub-Mount based LED Package (실리콘 서브 마운틴 기반의 LED 패키지 재료평가 및 신뢰성 시험)

  • Kim, Young-Pil;Ko, Seok-Cheol
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.4
    • /
    • pp.1-10
    • /
    • 2015
  • The light emitting diodes(LED) package of new structure is proposed to promote the reliability and lifespan by maximize heat dissipation occurred on the chip. We designed and fabricated the LED packages mixing the advantages of chip on board(COB) based on conventional metal printed circuit board(PCB) and the merits of Si sub-mount using base as a substrate. The proposed LED package samples were selected for the superior efficiency of the material through the sealant properties, chip characteristics, and phosphor properties evaluations. Reliability test was conducted the thermal shock test and flux rate according to the usage time at room temperature, high-temperature operation, high-temperature operation, high-temperature storage, low-temperature storage, high-temperature and high-humidity storage. Reliability test result, the average flux rate was maintained at 97.04% for each items. Thus, the Si sub-mount based LED package is expected to be applicable to high power down-light type LED light sources.

Study on Chip on Chip Technology for Minimizing LED Driver ICs (LED Driver ICs칩의 소형화를 위한 Chip on Chip 기술에 관한 연구)

  • Kang, Ey Goo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.3
    • /
    • pp.131-134
    • /
    • 2016
  • This research was analyzed thermal characteristics that was appointed disadvantage when smart LED driver ICs was packaged and we applied extracted thermal characteristics for optimal layout design. We confirmed reliability of smart LED driver ICs package without additional heat sink. If the package is not heat sink, we are possible to minimize package. For extracting thermal loss due to overshoot current, we increased driver current by two and three times. As a result of experiment, we obtained 22 mW and 49.5 mW thermal loss. And we obtained optimal data of 350 mA driver current. It is important to distance between power MOSFET and driver ICs. If thhe distance was increased, the temperature of package was decreased. And so we obtained optimal data of 3.7 mm distance between power MOSFET and driver ICs. Finally, we fabricated real package and we analyzed the electrical characteristics. We obtained constant 35 V output voltage and 80% efficiency.

Measurement System for Phosphor Dispensing Shape of LED Chip Package Using Machine Vision (머신비전에 의한 LED Chip Package 형광물질 토출형상 측정)

  • Ha, Seok-Jae;Kim, Jong-Su;Cho, Myeong-Woo;Choi, Jong-Myung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.5
    • /
    • pp.2113-2120
    • /
    • 2013
  • In this study, an efficient machine vision based inspection system is developed for the in-line measurement of phosphor resin dispensing shapes on LED chip package. Since the phosphor resin (target material) has semitransparent characteristics, illuminated light beam is reflected from the bottom of the chip as well as from the surface. Since such phenomenon can deteriorate inspection reliability, a white LED and a 635nm laser slit beams are experimentally tested to decide suitable illumination optics. Also, specular and diffuse reflection methods are tested to decide suitable optical triangulation. As a result, it can be known that the combination of a white slit beam source and specular reflection method show the best inspection results. The Catmull-Rom spline interpolation is applied to the obtained data to form smoother surface. From the results, it can be conclude that the developed system can be sucessfully applied to the in-line inspection of LED chip packaging process.

Study on Thermal Analysis for Optimization LED Driver ICs

  • Chung, Hun-Suk
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.2
    • /
    • pp.59-61
    • /
    • 2017
  • This research was analyzed thermal characteristics that was appointed disadvantage when smart LED driver ICs was packaged and we applied extracted thermal characteristics for optimal layout design. We confirmed reliability of smart LED driver ICs package without additional heat sink. If the package is not heat sink, we are possible to minimize package. For extracting thermal loss due to overshoot current, we increased driver current by two and three times. As a result of experiment, we obtained 22 mW and 49.5 mW thermal loss. And we obtained optimal data of 350 mA driver current. It is important to distance between power MOSFET and driver ICs. If the distance was increased, the temperature of package was decreased. And so we obtained optimal data of 3.7 mm distance between power MOSFET and driver ICs. Finally, we fabricated real package and we analyzed the electrical characteristics. We obtained constant 35 V output voltage and 80% efficiency.

Optical and Thermal Influence Analysis of High-power LED by MCPCB temperature (MCPCB의 온도에 따른 고출력 LED의 광학적, 열적 영향력 분석)

  • Lee, Seung-Min;Yang, Jong-Kyung;Jo, Ju-Ung;Lee, Jong-Chan;Park, Dae-Hee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.12
    • /
    • pp.2276-2280
    • /
    • 2008
  • In this paper, we present thermal dependancy of LED package element by changing temperature of MCPCB for design high efficiency LED lamp, and confirmed influence of LED chip against temperature with analysis of thermal resistance and thermal capacitance. As increasing temperature, WPOs were decreased from 25 to 22.5 [%] and optical power were also decreased. that is decreased reason of optical power that forward voltage was declined by decrease of energy bandgap. Therefore optical power by temperature of MCPCB should consider to design lamp for street light and security light. Moreover, compensation from declined optical efficiency is demanded when LED package is composed. Also, thermal resistances from chip to metal PCB were decreased from 12.18 to 10.8[$^{\circ}C/W$] by changing temperature. Among the thermal resistances, the thermal resistance form chip to die attachment was decreased from 2.87 to 2.5[$^{\circ}C/W$] and was decreased 0.72[$^{\circ}C/W$] in Heat Slug by chaning temperature. Therefore, because of thermal resistance gap in chip and heat slug, reliability and endurance of high power LED affect by increasing non-radiative recombination in chip from heat.

Process Capability Optimization of a LED Die Bonding Using Response Surface Analysis (반응표면분석법을 이용한 LED Die Bonding 공정능력 최적화)

  • Ha, Seok-Jae;Cho, Yong-Kyu;Cho, Myeong-Woo;Lee, Kwang-Cheol;Choi, Won-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.10
    • /
    • pp.4378-4384
    • /
    • 2012
  • In LED chip packaging, die bonding is a very important process which fixes the LED chip on the lead frame to provide enough strength for the next process. This paper focuses on the process optimization of a LED die bonding, which attaches small zener diode chip on PLCC LED package frame, using response surface analysis. Design of experiment (DOE) of 5 factors, 3 levels and 5 responses are considered, and the results are investigated. As the results, optimal conditions those satisfy all response objects can be derived.

Thermo-ompression Process for High Power LEDs (High Power LED 열압착 공정 특성 연구)

  • Han, Jun-Mo;Seo, In-Jae;Ahn, Yoomin;Ko, Youn-Sung;Kim, Tae-Heon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.4
    • /
    • pp.355-360
    • /
    • 2014
  • Recently, the use of LED is increasing. This paper presents the new package process of thermal compression bonding using metal layered LED chip for the high power LED device. Effective thermal dissipation, which is required in the high power LED device, is achieved by eutectic/flip chip bonding method using metal bond layer on a LED chip. In this study, the process condition for the LED eutectic die bonder system is proposed by using the analysis program, and some experimental results are compared with those obtained using a DST (Die Shear Tester) to illustrate the reliability of the proposed process condition. The cause of bonding failures in the proposed process is also investigated experimentally.

Heat Conduction Analysis of Metal Hybrid Die Adhesive Structure for High Power LED Package (고출력 LED 패키지의 열 전달 개선을 위한 금속-실리콘 병렬 접합 구조의 특성 분석)

  • Yim, Hae-Dong;Choi, Bong-Man;Lee, Dong-Jin;Lee, Seung-Gol;Park, Se-Geun;O, Beom-Hoan
    • Korean Journal of Optics and Photonics
    • /
    • v.24 no.6
    • /
    • pp.342-346
    • /
    • 2013
  • We present the thermal analysis result of die bonding for a high power LED package using a metal hybrid silicone adhesive structure. The simulation structure consists of an LED chip, silicone die adhesive, package substrate, silicone-phosphor encapsulation, Al PCB and a heat-sink. As a result, we demonstrate that the heat generated from the chip is easily dissipated through the metal structure. The thermal resistance of the metal hybrid structure was 1.662 K/W. And the thermal resistance of the total package was 5.91 K/W. This result is comparable to the thermal resistance of a eutectic bonded LED package.