• Title/Summary/Keyword: LED Packaging

Search Result 132, Processing Time 0.027 seconds

Effect of Die Attach Process Variation on LED Device Thermal Resistance Property (Die attach 공정조건에 따른 LED 소자의 열 저항 특성 변화)

  • Song, Hye-Jeong;Cho, Hyun-Min;Lee, Seung-Ik;Lee, Cheol-Kyun;Shin, Mu-Hwan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.390-391
    • /
    • 2007
  • LED Packaging 과정 중 Die bond 재료로 Silver epoxy를 사용하여 Packaging 한 후 T3Ster 장비로 열 저항 값(Rth)을 측정하였다. Silver epoxy 의 접착 두께를 조절하여 열 저항 값을 측정하였고, 열전도도 값이 다른 Silver epoxy를 사용하여 열 저항 값을 측정하였다. Silver epoxy 접착 두께가 충분하여 Chip 전면에 고루 분포되었을 경우 그렇지 않은 경우보다 평균 4.8K/W 낮은 13.23K/W의 열 저항 값을 나타내었고, 열전도도가 높은 Silver epoxy 일수록 열전도도가 낮은 재료보다 평균 4.1K/W 낮은 12K/W의 열 저항 값을 나타내었다.

  • PDF

3-Dimensional Shape Inspection for Micro BGA by LED Reflection Image (LED 반사영상을 이용한 마이크로 BGA 3차원형상검사)

  • Kim, Jee Hong
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.2
    • /
    • pp.55-59
    • /
    • 2017
  • An optical method to inspect the 3-D shape of surface of Micro BGA is proposed, where spatially arranged LED light sources and specular reflection are considered. The reflected image captured by a vision system was analyzed to calculate the relative displacements of LED's in the image. Also, the statistics for all BGA's contained in a captured image are used together to find out the criteria for the detection of existing defects, and the usefulness of the proposed method is shown via experiments.

Thermal Analysis and Optimization of 6.4 W Si-Based Multichip LED Packaged Module

  • Chuluunbaatar, Zorigt;Kim, Nam Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.3
    • /
    • pp.234-238
    • /
    • 2014
  • Multichip packaging was achieved the best solution to significantly reduce thermal resistance at the same time, to increase luminance intensity in LEDs packaging application. For the packaging, thermal spreading resistance is an important parameter to get influence the total thermal performance of LEDs. In this study, silicon-based multichip light emitting diodes (LEDs) packaged module has been examined for thermal characteristics in several parameters. Compared to the general conventional single LED packaged chip module, multichip LED packaged module has many advantages of low cost, low density, small size, and low thermal resistance. This analyzed module is comprised of multichip LED array, which consists of 32 LED packaged chips with supplement power of 0.2 W at every single chip. To realize the extent of thermal distribution, the computer-aided design model of 6.4 W Si-based multichip LED module was designed and was performed by the simulation basis of actual fabrication flow. The impact of thermal distribution is analyzed in alternative ways both optimizing numbers of fins and the thickness of that heatsink. In addition, a thermal resistance model was designed and derived from analytical theory. The optimum simulation results satisfies the expectations of the design goal and the measurement of IR camera results. tart after striking space key 2 times.

Developing Low Cost, High Throughput Si Through Via Etching for LED Substrate (LED용 Si 기판의 저비용, 고생산성 실리콘 관통 비아 식각 공정)

  • Koo, Youngmo;Kim, GuSung;Kim, Sarah Eunkyung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.19 no.4
    • /
    • pp.19-23
    • /
    • 2012
  • Silicon substrate for light emitting diodes (LEDs) has been the tendency of LED packaging for improving power consumption and light output. In this study, a low cost and high throughput Si through via fabrication has been demonstrated using a wet etching process. Both a wet etching only process and a combination of wet etching and dry etching process were evaluated. The silicon substrate with Si through via fabricated by KOH wet etching showed a good electrical resistance (${\sim}5.5{\Omega}$) of Cu interconnection and a suitable thermal resistance (4 K/W) compared to AlN ceramic substrate.

Design of Structure for High-Efficiency LEDs on Patterned Sapphire Substrate (LED용 사파이어 기판의 고효율 패턴 설계)

  • Kang, Ho-Ju;Song, Hui-Young;Jeong, Myung-Yung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.18 no.4
    • /
    • pp.91-95
    • /
    • 2011
  • The light extraction efficiency in GaN based LED was analyzed qualitatively. The extraction efficiency was simulated with patterned shape, depth, size and spacing by using ray-tracing simulation. In simulation result, patterned shape and depth for the optimized extraction efficiency in PSS LED were in indented Hemi-sphere solid. Through the optimal patterning of the various factors, about 40% enhancement in extraction efficiency was obtained.

Thermal Transient Characteristics of Die Attach in High Power LED Package

  • Kim Hyun-Ho;Choi Sang-Hyun;Shin Sang-Hyun;Lee Young-Gi;Choi Seok-Moon;Oh Yong-Soo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.12 no.4 s.37
    • /
    • pp.331-338
    • /
    • 2005
  • The rapid advances in high power light sources and arrays as encountered in incandescent lamps have induced dramatic increases in die heat flux and power consumption at all levels of high power LED packaging. The lifetime of such devices and device arrays is determined by their temperature and thermal transients controlled by the powering and cooling, because they are usually operated under rough environmental conditions. The reliability of packaged electronics strongly depends on the die attach quality, because any void or a small delamination may cause instant temperature increase in the die, leading sooner or later to failure in the operation. Die attach materials have a key role in the thermal management of high power LED packages by providing the low thermal resistance between the heat generating LED chips and the heat dissipating heat slug. In this paper, thermal transient characteristics of die attach in high power LED package have been studied based on the thermal transient analysis using the evaluation of the structure function of the heat flow path. With high power LED packages fabricated by die attach materials such as Ag paste, solder paste and Au/Sn eutectic bonding, we have demonstrated characteristics such as cross-section analysis, shear test and visual inspection after shear test of die attach and how to detect die attach failures and to measure thermal resistance values of die attach in high power LED package. From the structure function oi the thermal transient characteristics, we could know the result that die attach quality of Au/Sn eutectic bonding presented the thermal resistance of about 3.5K/W. It was much better than those of Ag paste and solder paste presented the thermal resistance of about 11.5${\~}$14.2K/W and 4.4${\~}$4.6K/W, respectively.

  • PDF

Micro-LED Mass Transfer using a Vacuum Chuck (진공 척을 이용한 마이크로 LED 대량 전사 공정 개발)

  • Kim, Injoo;Kim, Yonghwa;Cho, Younghak;Kim, Sungdong
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.29 no.2
    • /
    • pp.121-127
    • /
    • 2022
  • Micro-LED is a light-emitting diode smaller than 100 ㎛ in size. It attracts much attention due to its superior performance, such as resolution, brightness, etc., and is considered for various applications like flexible display and VR/AR. Micro-LED display requires a mass transfer process to move micro-LED chips from a LED wafer to a target substrate. In this study, we proposed a vacuum chuck method as a mass transfer technique. The vacuum chuck was fabricated with MEMS technology and PDMS micro-mold process. The spin-coating approach using a dam structure successfully controlled the PDMS mold's thickness. The vacuum test using solder balls instead of micro-LED confirmed the vacuum chuck method as a mass transfer technique.

Position Detection System of Robot by using Visible Light Communication (VLC) (가시광통신을 이용한 로봇 위치확인 시스템)

  • Kim, Eung Soo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.23 no.4
    • /
    • pp.119-123
    • /
    • 2016
  • In this paper, we have fabricated the position detection system with LED and optical sensor to detect a position and trace of robot through visible light communication (VLC). The fabricated position detection system did not have been affected by sunlight in outdoor and a fluorescent light in building. Because 4 LEDs, respectively, transmitted different signals, we have known the position of robot. And we have also observed a trajectory of robot in real time.