• Title/Summary/Keyword: LED Lens

Search Result 209, Processing Time 0.034 seconds

LPE meltaback-etch and re-epitaxy of GaAs/AlGaAs for optical micro-lenses fabrication (광소자용 미소렌즈 제작을 위한 GaAs/AlGaAs계 액상식각 및 에피택시)

  • 함성호;권영세
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.34D no.9
    • /
    • pp.64-71
    • /
    • 1997
  • A new etching technique of meltback was investigated for GaAs lensed optical devices with selective windows opending in the LPE (liquid phase epitaxy) system. In the meltback process, the etch depth and the etch shape were controlled by the degree of under-saturation, etch time and other parameters. A GaAs/AlGaAs DH layer was grown on the selectively etched hemispherical well for optical device application such as lensed surface emitting LED. The regrowth process were related with the coolin grate and the well to well spacing. A novel surface emitting LED with hemispherical AlGaAs lens was fabricated using the meltbakc and regrowth as the key process for AlaAs lens array. The light emitting efficiency of the LED was upto three times higher than the similar structure LED without lens. The meltback and regrowth technique was applicable to manufacture the optical device in LPE.

  • PDF

Fabrication of a Water Sterilization System Utilizing a 275 nm-wavelength UVC LED and TIR Lens-equipped Light Source (275 nm UVC LED와 TIR 렌즈 장착 광원을 이용하는 물 살균장치 제작)

  • Kawan Anil;Seung Hui Yu;Seung Hoon Yu;J. A. Park;I. S. Shin;S. J. Lee;Y. B. Kim;Y. B. Kown;D. G. Han;Soon Jae Yu;Heetae Kim;Seong Bae Park
    • Journal of the Semiconductor & Display Technology
    • /
    • v.23 no.1
    • /
    • pp.84-87
    • /
    • 2024
  • A water sterilization system is developed utilizing a 275 nm-wavelength LED light source equipped with a TIR lens. The system's light source is constructed by combining a 275 nm-wavelength UVC LED, known for its germicidal properties, with a TIR lens having a direction angle of 6.8 degrees. The optical simulation software 'LightTools' is employed to design and optimize the intensity of deep ultraviolet sterilizing light irradiation, its distribution, and sterilization capacity. In the inactivation experiment with E. coli, the water sterilizer system achieved a sterilization rate of 78.92 % while maintaining a water flow capacity of 50 L/min. Compared to the conventional mercury lamp light source water sterilizer system, the UVC LED water sterilizer system addresses environmental concerns related to mercury usage and offers advantages in terms of lifespan and durability.

  • PDF

Light Distribution Pattern of Optical System in Street Lights with AC COB-Type LEDs (AC COB형 LED 가로등의 광학계 배광 패턴)

  • Kim, Young-Gil;Yoo, Kyung-Sun;Lee, Chang-Soo;Hyun, Dong-Hoon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.26 no.1
    • /
    • pp.66-73
    • /
    • 2017
  • This study attempted to design lights with Type II distribution suitable for LED street lights based on the regulations of street light distribution developed by the Illuminating Engineering Society of North America (IESNA). The shape of an asymmetric lens, different from that of a rotationally symmetric lens, cannot be generated using a simple mathematical formula. In the first trial, the outline of the lens was fixed and simulated to confirm the distribution type. Following ISENA regulations, some problems that occurred during simulations and repeating was be modified that process is how we detected errors. Through optical research and simulations, a lens conforming to the regulations of Type II very short, Type II short, and Type II medium distributions was developed. A prototype was developed using simulation data and it was subjected to distribution tests. The results show that it can compare with property of Type II distribution.

Effect of Heat Treatment Temperature and Coating Thickness on Conversion Lens for White LED (백색 LED용 색변환 렌즈의 열처리 온도 및 코팅 두께에 따른 영향)

  • Lee, Hyo-Sung;Hwang, Jong Hee;Lim, Tae-Young;Kim, Jin-Ho;Jung, Hyun-Suk;Lee, Mi Jai
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.6
    • /
    • pp.533-538
    • /
    • 2014
  • Today, silicon and epoxy resin are used as materials of conversion lenses for white LEDs on the basis of their good bonding and transparency in LED packages. But these materials give rise to long-term performance problems such as reaction with water, yellowing transition, and shrinkage by heat. These problems are major factors underlying performance deterioration of LEDs. In this study, in order to address these problems, we fabricated a conversion lenses using glass, which has good chemical durability and is stable to heat. The fabricated conversion lenses were applied to a remote phosphor type. In this experiment, the conversion lens for white LED was coated on a glass substrate by a screen printing method using paste. The thickness of the coated conversion lens was controlled during 2 or 3 iterations of coating. The conversion lens fabricated under high heat treatment temperature and with a thin coating showed higher luminance efficiency and CCT closer to white light than fabricated lenses under low heat treatment temperature or a thick coating. The conversion lens with $32{\mu}m$ coating thickness showed the best optical properties: the measured values of the CCT, CRI, and luminance efficiency were 4468 K, 68, and 142.22 lm/w in 20 wt% glass frit, 80 wt% phosphor with sintering at $800^{\circ}C$.

Fundamentals of light - emitting diode lamp design (LED 램프의 기본 설계이론)

  • Kim, Sun-Won;Song, Byung-Ki;Lee, Song-Jae
    • Korean Journal of Optics and Photonics
    • /
    • v.13 no.4
    • /
    • pp.324-331
    • /
    • 2002
  • The fundamentals of light-emitting diode lamp design are presented. The shapes of the reflecting cup and lens employed in LED lamps can be flexibly adjusted, over a relatively large range, by using a few parameters. The analysis of the designed lamps by Monte Carlo photon simulation shows that diverse far-field beam patterns required in various application areas can be achieved.

Analysis of Color Uniformity of White LED Lens Packages for Direct-lit LCD Backlight Applications

  • Joo, Byung-Yun;Ko, Jae-Hyeon
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.6
    • /
    • pp.506-512
    • /
    • 2013
  • Recently, the color separation issue of wide-spreading white LEDs has attracted attention due to their wide applicability as light sources in direct-lit LCD backlights. These wide-spreading LED packages usually consist of LED chips, a color-conversion phosphor layer, and a light-shaping lens. The technical aspect of this color issue was related to a method for balancing the yellow spectral component emitting from phosphors with respect to the blue one from the LED chip as a function of viewing angle. In this study, we suggested an approach for carrying out quantitative analysis for the color separation problem occurring in wide-spreading LED packages by optical simulation. In addition, the effect of an internal scattering layer on the color uniformity was investigated, which may be considered as a potential solution for this problem.

Analysis of Performance on Asymmetric LED Lens Design Using Three-Dimensional Free-Form Surface Expression (3차원 자유곡면식을 이용한 LED 비대칭 렌즈 설계 및 성능 비교 분석)

  • Lee, Chang Soo;Lee, Soo Young;Hyun, Dong Hoon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.26 no.3
    • /
    • pp.328-336
    • /
    • 2017
  • The exit surface of a lens is designed using a three-dimensional free-form expression in order to easily modify a curved surface. This enables the design of numerical values and mathematical things using three-dimensional free-form expression, and enhances precision because it can be fine-tuned via numerical control. The standard of "Classification of Luminaire Light Distribution" for outdoor lighting fixtures by IESNA is adopted in order to examine the correlation between three-dimensional free-form surface expression and lighting performance. The variation of light distribution type and range is analyzed using the values of maximum light intensity and 50% light intensity. The actual tolerance occurs owing to parameters such as the thickness of the lens, the distance between LEDs, and the movement of the center of the incident surface; the effects of changes in these parameters on the performance are compared and analyzed.

Design and Simulation of White Color Mixing Lens for Backlight Unit

  • Hwang, Sung-Kyung;Lim, Mee-Hyun;Han, Hae-Wook;Cho, Min-Su;Lee, Jae-Ho;Jang, Kyeng-Kun;Kang, Sin-Ho;Chung, In-Jae
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.229-230
    • /
    • 2009
  • This paper proposes a new design of ultra-slim color mixing lens (CML) for backlight unit (BLU), and presents simulated performance of the design. The novel color mixing structure has a shorter mixing length (< 1cm) than the existing color mixing structure, and achieves high efficiency and uniformity.

  • PDF

A Study on the Adequate HD Camera Focal Length in the Broadcasting Studio using LED Video Wall (LED 비디오월을 사용하는 방송환경에서 HD 카메라의 적정 초점거리 연구)

  • Choi, Ki-chang;Kwon, Soon-chul;Lee, Seung-hyun
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.5
    • /
    • pp.713-721
    • /
    • 2022
  • In order to use the LED video wall in the broadcasting studio, there are a few things to be aware of. First, since the pixels are closely arranged, a moire phenomenon may occur due to a short arrangement period, and second, the distance between pixels (pixel pitch) may be recorded on the image sensor of the broadcasting camera. When moire occurs or pixel pitch is observed, viewers feel uncomfortable. Moire effect can be reduced by adjusting the shooting distance or angle of the camera, but in order to prevent the pixel pitch from being recorded on the image sensor, secure a sufficient distance between the LED video wall and camera. even when the distance secured, the zoom lens used in the broadcasting studio must be operated by appropriately changing the magnification. If the focal length is changed by changing the magnification to obtain a desired angle of view, the pixel pitch may be unintentionally recorded. In this study we propose the range that the pixel pitch is not observed while changing the magnification ratio of the zoom lens when the distance from the video wall is sufficiently secured. The content was played back on the LED video wall and the LED video wall was recorded on the server using an HD camera equipped with a B4 mount zoom lens