• Title/Summary/Keyword: LEAF SURFACE

Search Result 628, Processing Time 0.033 seconds

Daily Changes in Red-Pepper Leaf Surface Temperature with Air and Soil Surface Temperatures

  • Eom, Ki-Cheol;Lee, Byung-Kook;Kim, Young-Sook;Eom, Ho-Yong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.5
    • /
    • pp.345-350
    • /
    • 2014
  • This study was conducted to investigate the changes in daily surface temperature of red pepper leaf compared to air and soil surface temperature. The maximum, minimum and average daily temperatures of red pepper leaf were 27.80, 11.40 and $19.01^{\circ}C$, respectively, which were lower by 0.10, 7.60 and $3.86^{\circ}C$ than air temperature, respectively, and lower by 15.00, 0.0 and $4.38^{\circ}C$ than soil surface temperature, respectively. Mean deviations of the difference between measured and estimated temperature by the E&E Model (Eom & Eom, 2013) for the air and surface temperature of red pepper leaf and soil were 0.64, 1.82 and $4.77^{\circ}C$, respectively. The relationships between measured and estimated scaled factor of the air and surface temperature of red pepper leaf and soil were very close to the 1:1 line. Difference between air and surface temperature of red pepper leaf showed a linear decreasing function with the surface temperature of red pepper leaf. Difference between soil surface temperature and air and surface temperature of red pepper leaf linearly increased with the soil surface temperature.

A Study on the Anisotropic Flow Characteristics of Droplets on Rice Leaf Surface (벼 잎 표면에서 액적의 이방성 흐름 특성에 관한 연구)

  • Kim, Tae Wan
    • Tribology and Lubricants
    • /
    • v.33 no.6
    • /
    • pp.251-255
    • /
    • 2017
  • In this study, we aimed to clarify the wettability and anisotropic flow characteristics of rice leaves as a basic study for engineering applications of anisotropic flow characteristics of rice leaf surface. To investigate the surface structure of rice leaf, the micro grooves and asperities of rice leaves were analyzed and quantified by scanning electron microscope, Confocal laser scanning microscopy, and stylus profilometer. The analysis of the structure of rice leaf surface confirmed that asymmetrical cone - like protrusions in leaf veins were inclined toward the leaf tip. The static contact angle test showed that the contact angle at the midline vein or leaf vein location where the micropapilla is concentrated is about $20^{\circ}$ higher than the leaf blade position. The contact angles of fresh and dried rice leave were also compared. The dried rice leaves showed a contact angle of about $5^{\circ}$ to $15^{\circ}$ higher than that of fresh leaves, suggesting that the volume of the protrusions decreased as the water was removed, thus reducing the contact area with the droplet. In the contact angle history test the hysteresis in the leaf tip direction was found to be much lower than that in the leaf petiole direction. This results can be explained that asymmetrical cone - like protrusions had a significant effect on the droplet flow characteristics through contact angle hysteresis experiment.

Estimation Model of the Change in Dairy Leaf Surface Temperature Using Scaling Technique

  • Eom, Ki-Cheol;Eom, Ho-Yong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.5
    • /
    • pp.359-364
    • /
    • 2013
  • This study was conducted to develop a model to estimate crop leaf surface temperature. The results were as following; A definition for the daily time based on elapsed time from the midnight (00:00) as "E&E time" with the unit of Kmin. was suggested. The model to estimate the scaled temperature ($T^*e$) of crop leaf surface temperature by scale factor ($T^*$) according to the "E&E time : Kmin."(X) was developed as eq. (1) $T^*e=0.5{\cdot}sin(X+780)+0.5$ (2) $T^*=(Tx-Tn)/(Tm-Tn)$, Tx : Daily leaf temperature, Tm : Daily maximum leaf temperature, Tn : Daily minimum leaf temperature. Relative sensitivity of the measured temperature compared to the estimated temperature of red pepper, soybean and persimmon was 1.078, 1.033 and 0.973, respectively.

Aerosol Deposition and Behavior on Leaves in Cool-temperate Deciduous Forests. Part 1: A Preliminary Study of the Effect of Fog Deposition on Behavior of Particles Deposited on the Leaf Surfaces by Microscopic Observation and Leaf-washing Technique

  • Watanabe, Yoko;Yamaguchi, Takashi;Katata, Genki;Noguchi, Izumi
    • Asian Journal of Atmospheric Environment
    • /
    • v.7 no.1
    • /
    • pp.1-7
    • /
    • 2013
  • To establish the method for investigating the behavior of aerosol particles deposited on the leaf surface against fog water under natural conditions, scanning electron microscopy with energy-dispersive X-ray (SEM-EDX) analysis and wash water analysis by ion chromatography after the washing treatment were performed using leaves of white birch collected from low part of the tree crown and the top of the tree in Sapporo City, Hokkaido, northern Japan. Each of collected leaves was divided into two parts according to the treatment performed: leaf surface (adaxial side) was 1) untreated, and 2) washed with deionized water with a pipette. In untreated samples, many particles of various shapes, including soil particles and organic debris, were deposited on the surface. Particles containing S were found on the surface of samples collected from only low part of the tree crown. After the washing treatment, SEM-EDX analysis revealed that soil particles and particles containing S had been washed off with water, although some particles such as soil particles and organic debris still remained on the leaf surface. The major anion such as $SO{_4}^{2-}$ was detected in wash water of all samples, although the peak of S in X-ray spectra was not detected from samples collected at top of the tree. The combination of SEM-EDX analysis with wash water analysis indicated that $SO{_4}^{2-}$ was deposited on the leaf surface in dissolved state and/or in state of submicron particles. These results suggested that fog water could remove soil particles and particles containing S and $SO{_4}^{2-}$ from the leaf surfaces, but not all particles. There was no difference in sampling position in the tree crown. Our study suggested that combination with SEM-EDX analysis and wash water analysis would be effective for investigation of the behavior of particles on the leaf surface against fog water.

On the Growth of the Surface Area of Isolated Young Trees, Alnus tinctoria Sargent (산오리나무 고립목의 표면적성장에 대하여)

  • 임양재
    • Journal of Plant Biology
    • /
    • v.16 no.1_2
    • /
    • pp.1-5
    • /
    • 1973
  • Six young trees of Alnus tinctoria grown in isolation, each having different growing stage, were selected and the surface area of their roots, stems and leaves was determined. Each of the roots of more than 0.2mm in diameter and stems was cut at intervals of 10cm and their surface area was calculated with 2$\pi$rl from the average diameter (2r) of both sections (upper and lower) by making cylindrical estimation of the cut pieces. The leaf area measured was only one side area, and the volume of cut piece and amount of dry matter of each organ were also measured. The percentage to the surface area of the whole plant body by each organ was 4-12% in root, 7-9% in stem and 69-89% in leaf, respectively. There was relatively a little individual difference. However, the surface area ratios of root and stem showed a slightly increasing tendency while that of leaf decreasing according to the growing stage. The ratio of sum leaf area index (LAIi) was 2.3-4.0$m^2$/$m^2$-and that of the surface area index(SaIi) was 0.16-0.33$m^2$/$m^2$, respectively. It has been known that the stem surface area(SAI) to the leaf area index(LAI) is within the range of 31-53%, but the SAIi is within the range of 8-11% of the LAIi.

  • PDF

Composition of Leaf Surface Lipid in Flue-cured Tobacco and Their Changes during Flue-curing (황색종 잎담배의 엽면지질 성분 조성 및 건조중 변화)

  • 지상운;김도연;이문용;김영희;신승구
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.19 no.1
    • /
    • pp.57-63
    • /
    • 1997
  • The composition of leaf surface lipid in Flue-cured tobacco and their changes during curing was investigated. The flue-cured variety, Nicotiana tabacum cv. NC 82 was cultivated at Eumsung experiment station in 1996. The samples of riced leaves with different stalk Position(Lugs, Cutter, Leaf and Tips) and different curing stage at half yellowing(24hr), yellowing(48 hr) , color axing(72 hr), midrib drying(96 hr) and cured(120 hr) were collected for analysis of leaf surface lipid. $\alpha$ - and $\beta$ - 4, 8, 13-Duvatriene-1, 3-diol($\alpha$, $\beta$-DVT) were major components in leaf surface lipid extracted with methylene chloride and sugar ester was detected slightly DVT content was increased with ascending stalk position, but increasing trend of total hydrocarbon was not observed. While DVT was decreased throughout curing of tobacco leaves, hydrocarbon content did not show significant change during curing process. Twenty-two duvane compounds were detected by capillary GC in duvane fraction isolated from leaf surface lipid and of which 11 compounds were identified by GC-MS. These compounds were decreased with curing in all stalk position.

  • PDF

The Impact of the Morphological Characteristics of Leaves on Particulate Matter Removal Efficiency of Plants

  • Son, Deokjoo;Kim, Kwang Jin;Jeong, Na Ra;Yun, Hyung Gewon;Han, Seung Won;Kim, Jeongho;Do, Gyung-Ran;Lee, Seon Hwa;Shagol, Charlotte C.
    • Journal of People, Plants, and Environment
    • /
    • v.22 no.6
    • /
    • pp.551-561
    • /
    • 2019
  • This study was conducted to find out differences in the removal efficiency of particulate matter (PM) depending on the type of plants and the morphological characteristics of leaves. A total of 12 plants were used, with three plants selected for each type of leaves (big leaf, small leaf, compound leaf, needle leaf). We measured the removed amount of PM10 and PM2.5, the structure of the abaxial leaf surface, and the weight of the wax layer of each plant. Plants with the high removal efficiency of PM included Pachira aquatica Aubl., Ardisia crenata, and Dieffenbachia 'Marianne', and plants with the low removal efficiency included Nandina domestica Thunb, Schefflera arboricola, and Quercus dentata. The abaxial leaf surface having a high removal efficiency of PM had many large wrinkles, and the abaxial leaf surface having a medium removal efficiency was flat and smooth. On the other hand, there were many fine hairs on the abaxial leaf surface with a low removal efficiency. According to the plant leaf type, the PM10 removal efficiency of plants with needle leaves was about three times higher than that of other plants. In particular, the wax layer of conifers weighed 6-24 times higher than those of other plants. The stomata of conifers were evenly distributed on the adaxial and abaxial leaf surfaces; however, the stomata of Sciadopitys verticillata appeared in the form of papillae unlike general stomata. Therefore, the removal efficiency of PM varied depending on the macro-, and micro-morphological characteristics of plant leaves such as the structure of the abaxial leaf surface, and the weight of the wax layer. Based on this research, selecting plants that are effective in reducing PM in consideration of the plant type and leaf characteristics will improve indoor air quality and decrease exposure of PM to human body.

Epicuticular Waxes and Stomata of Adult Scale Leaves of the Chinese Juniper Juniperus chinensis

  • Kim, Ki-Woo
    • Applied Microscopy
    • /
    • v.42 no.3
    • /
    • pp.124-128
    • /
    • 2012
  • Leaf surface structures were investigated in the Chinese juniper Juniperus chinensis by scanning electron microscopy. Adult scale leaves were collected from the tree, air-dried at room temperature, and sputter-coated with gold without further specimen preparation. Approximately fi ve stomata were locally distributed and arranged in clusters on the leaf surface. Stomata were ovoid and ca. 40 ${\mu}m$ long. The epicuticular wax structures of J. chinensis leaves were tubules and platelets. Numerous tubules were evident on the leaf regions where stomata were found. The tubules were cylindrical, straight, and ca. 1 ${\mu}m$ in length. They almost clothed the stomatal guard cells, and occluded the slit-shaped stomatal apertures. Moreover, the wax ridges were flat crystalloids that were connected to the surface by their narrow side. They did not have distinct edges, and their width/height ratio varied. In particular, the wax ridges could be discerned on the leaf regions where stomata were not present nearby. Since the wax ridges did not have distinct edges on their margin, they were identified as platelets. Instances were noted where platelets were oriented either parallel to each other or perpendicular to the cuticle surface. These results can be used in biomimetics to design the hierarchical structures for mimicking the plant innate properties such as hydrophobicity and self-cleaning effects of the leaf surface.

Alteration of Leaf Surface Structures of Poplars under Elevated Air Temperature and Carbon Dioxide Concentration

  • Kim, Ki Woo;Oh, Chang Young;Lee, Jae-Cheon;Lee, Solji;Kim, Pan-Gi
    • Applied Microscopy
    • /
    • v.43 no.3
    • /
    • pp.110-116
    • /
    • 2013
  • Effects of elevated air temperature and carbon dioxide ($CO_2$) concentration on the leaf surface structures were investigated in Liriodendron tulipifera (yellow poplar) and Populus tomentiglandulosa (Suwon poplar). Cuttings of the two tree species were exposed to elevated air temperatures at $27/22^{\circ}C$ (day/night) and $CO_2$ concentrations at 770/790 ppm for three months. The abaxial leaf surface of yellow poplar under an ambient condition ($22/17^{\circ}C$ and 380/400 ppm) had stomata and epicuticular waxes (transversely ridged rodlets). A prominent increase in the density of epicuticular waxes was found on the leaves under the elevated condition. Meanwhile, the abaxial leaf surface of Suwon poplar under an ambient condition was covered with long trichomes. The leaves under the elevated condition possessed a higher amount of long trichomes than those under the ambient condition. These results suggest that the two poplar species may change their leaf surface structures under the elevated air temperature and $CO_2$ concentration condition for acclimation of increased photosynthesis.

Ontogeny of Stomata and Aerenchyma Tissue in Trapa natans L. var. bispinosa Makino (마름(Trapa natans L. var. bispinosa Makino)의 기공 및 통기조직의 형태발생)

  • 성민웅
    • Journal of Plant Biology
    • /
    • v.26 no.1
    • /
    • pp.41-51
    • /
    • 1983
  • This study was carried out to investigate ontogeny of stomata and aerenchyma tissue in Trapa natans L. var. bispinosa Makino, an aquatic plant. Ontogeny of stomata in this plant was an aperigenous type surrounding with 5 to 8 epidermal cells without subsidiary cells. Stomata were distributed abundantly on the upper surface of leaf, however, no stoma was found on the lower surface of leaf, and on the epidermis of reproductive organ, petiole and stem. Ontogency of aerenchyma tissue was progressed with five steps; 1) formation of angular cells by division of cortex cells, 2) development of small and large globular cells in accompany with schizogenous intercellular space, 3) enlargement of globular cells and more expansion of intercellular space, 4) cell induction of long elliptic and triarmed shape, 5) completion of the largest intercellular space from endodermis toepidermis. During the growth period two types of leaf were appeared at each node of stems; one type was a submerged and early-fallen leaf, the other was a floating leaf on water surface.

  • PDF