• Title/Summary/Keyword: LEACH-Mobile

Search Result 26, Processing Time 0.024 seconds

Routing Protocol for Wireless Sensor Networks Based on Virtual Force Disturbing Mobile Sink Node

  • Yao, Yindi;Xie, Dangyuan;Wang, Chen;Li, Ying;Li, Yangli
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.4
    • /
    • pp.1187-1208
    • /
    • 2022
  • One of the main goals of wireless sensor networks (WSNs) is to utilize the energy of sensor nodes effectively and maximize the network lifetime. Thus, this paper proposed a routing protocol for WSNs based on virtual force disturbing mobile Sink node (VFMSR). According to the number of sensor nodes in the cluster, the average energy and the centroid factor of the cluster, a new cluster head (CH) election fitness function was designed. At the same time, a hexagonal fixed-point moving trajectory model with the best radius was constructed, and the virtual force was introduced to interfere with it, so as to avoid the frequent propagation of sink node position information, and reduce the energy consumption of CH. Combined with the improved ant colony algorithm (ACA), the shortest transmission path to Sink node was constructed to reduce the energy consumption of long-distance data transmission of CHs. The simulation results showed that, compared with LEACH, EIP-LEACH, ANT-LEACH and MECA protocols, VFMSR protocol was superior to the existing routing protocols in terms of network energy consumption and network lifetime, and compared with LEACH protocol, the network lifetime was increased by more than three times.

A Research of LEACH Protocol improved Mobility and Connectivity on WSN using Feature of AOMDV and Vibration Sensor (AOMDV의 특성과 진동 센서를 적용한 이동성과 연결성이 개선된 WSN용 LEACH 프로토콜 연구)

  • Lee, Yang-Min;Won, Joon-We;Cha, Mi-Yang;Lee, Jae-Kee
    • The KIPS Transactions:PartC
    • /
    • v.18C no.3
    • /
    • pp.167-178
    • /
    • 2011
  • As the growth of ubiquitous services, various types of ad hoc networks have emerged. In particular, wireless sensor networks (WSN) and mobile ad hoc networks (MANET) are widely known ad hoc networks, but there are also other kinds of wireless ad hoc networks in which the characteristics of the aforementioned two network types are mixed together. This paper proposes a variant of the Low Energy Adaptive Cluster Hierarchy (LEACH) routing protocol modified to be suitable in such a combined network environment. That is, the proposed routing protocol provides node detection and route discovery/maintenance in a network with a large number of mobile sensor nodes, while preserving node mobility, network connectivity, and energy efficiency. The proposed routing protocol is implemented with a multi-hop multi-path algorithm, a topology reconfiguration technique using node movement estimation and vibration sensors, and an efficient path selection and data transmission technique for a great many moving nodes. In the experiments, the performance of the proposed protocol is demonstrated by comparing it to the conventional LEACH protocol.

A Study on clustering method in Mobile Sensor Network (이동 센서 네트워크를 위한 클러스터링 기법에 관한 연구)

  • Kim, Yo-Sup;Lee, Jong-Won;Lee, Jong-Yong;Lee, Sang-Hun
    • Proceedings of the KAIS Fall Conference
    • /
    • 2010.11a
    • /
    • pp.3-6
    • /
    • 2010
  • 분산형 클러스터 라우팅 기법 중 가장 대표적 프로토콜인 LEACH(Low Energy Adaptive Clustering Hierarchy)프로토콜은 자기구성과 제한된 전원 문제에 있어 기존의 직접전송방식에 비해 최대 8배 이상의 성능 향상을 가져왔다. 그러나 LEACH는 고정노드를 가정으로 하여 제안된 방식으로, 센서노드가 이동하는 환경에서 클러스터 구성 이후 노드가 현재 클러스터에서 이탈하는 경우 데이터의 전송을 위해서 현재의 통신을 보류하고 새로운 라운드의 클러스터 구성에 참여하여 통신해야 하므로 데이터 전송 지연과 손실을 유발 할 수 있다. 본 논문에서는 LEACH프로토콜을 기반으로 센서노드가 이동하는 환경에서 데이터의 전송 지연을 최소화 하기 위한 방안을 제시한다. 본 논문에서 제안한 방식의 성능평가를 위해 시뮬레이션 해본 결과 이동성을 지원하지 않는 기존의 LEACH 프로토콜에 비해 데이터 전송 성공률이 향상된 것을 확인 할 수 있었다.

  • PDF

Coverage Scheduling control Algorithm in MANET (모바일 에드 혹 네트워크에서 커버리지 스케쥴링 제어 알고리즘)

  • Oh, Young-jun;Lee, Kang-whan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.10a
    • /
    • pp.848-850
    • /
    • 2014
  • Mobile Ad hoc Networks(MANET) is consist of node that has mobility, MANET build cluster formation for using energy efficient. In existing LEACH algorithm elect cluster head node in coverage area by distribution function. However, when the cluster head node, that elected by distribution function, is divided coverage area unevenly, the network can't consumption energy efficiency. To solve this problem, we proposed CSWC(Coverage Scheduling Weight-value Control) algorithm. When the coverage area is divided nonchalance, proposed algorithm increased number of hops, that determines coverage area, for balance coverage area. As the result proposed algorithm is set balance coverage area, the network consumption energy efficiency.

  • PDF

DDCP: The Dynamic Differential Clustering Protocol Considering Mobile Sinks for WSNs

  • Hyungbae Park;Joongjin Kook
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.6
    • /
    • pp.1728-1742
    • /
    • 2023
  • In this paper, we extended a hierarchical clustering technique, which is the most researched in the sensor network field, and studied a dynamic differential clustering technique to minimize energy consumption and ensure equal lifespan of all sensor nodes while considering the mobility of sinks. In a sensor network environment with mobile sinks, clusters close to the sinks tend to consume more forwarding energy. Therefore, clustering that considers forwarding energy consumption is desired. Since all clusters form a hierarchical tree, the number of levels of the tree must be considered based on the size of the cluster so that the cluster size is not growing abnormally, and the energy consumption is not concentrated within specific clusters. To verify that the proposed DDC protocol satisfies these requirements, a simulation using Matlab was performed. The FND (First Node Dead), LND (Last Node Dead), and residual energy characteristics of the proposed DDC protocol were compared with the popular clustering protocols such as LEACH and EEUC. As a result, it was shown that FND appears the latest and the point at which the dead node count increases is delayed in the DDC protocol. The proposed DDC protocol presents 66.3% improvement in FND and 13.8% improvement in LND compared to LEACH protocol. Furthermore, FND improved 79.9%, but LND declined 33.2% when compared to the EEUC. This verifies that the proposed DDC protocol can last for longer time with more number of surviving nodes.

Context-Aware Mobile Gateway Relocation Scheme for Clustered Wireless Sensor Networks

  • Encarnacion, Nico N.;Yang, Hyunho
    • Journal of information and communication convergence engineering
    • /
    • v.10 no.4
    • /
    • pp.365-371
    • /
    • 2012
  • In recent years, researchers have been attracted to clustering methods to improve communication and data transmission in a network. Compared with traditional wireless networks, wireless sensor networks are energy constrained and have lower data rates. The concept of implementing a clustering algorithm in an existing project on gateway relocation is being explored here. Low energy adaptive clustering hierarchy (LEACH) is applied to an existing study on relocating a gateway. The study is further improved by moving the gateway to a specific cluster based on the number or significance of the events detected. The protocol is improved so that each cluster head can communicate with a mobile gateway. The cluster heads are the only nodes that can communicate with the mobile gateway when it (the mobile gateway) is out of the cluster nodes' transmission range. Once the gateway is in range, the nodes will begin their transmission of real-time data. This alleviates the load of the nodes that would be located closest to the gateway if it were static.

A Study on Distributed Self-Reliance Wireless Sensing Mechanism for Supporting Data Transmission over Heterogeneous Wireless Networks

  • Caytiles, Ronnie D.;Park, Byungjoo
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.12 no.3
    • /
    • pp.32-38
    • /
    • 2020
  • The deployment of geographically distributed wireless sensors has greatly elevated the capability of monitoring structural health in social-overhead capital (SOC) public infrastructures. This paper deals with the utilization of a distributed mobility management (DMM) approach for the deployment of wireless sensing devices in a structural health monitoring system (SHM). Then, a wireless sensing mechanism utilizing low-energy adaptive clustering hierarchy (LEACH)-based clustering algorithm for smart sensors has been analyzed to support the seamless data transmission of structural health information which is essentially important to guarantee public safety. The clustering of smart sensors will be able to provide real-time monitoring of structural health and a filtering algorithm to boost the transmission of critical information over heterogeneous wireless and mobile networks.

An Energy Efficient Clustering Scheme with Mobility Prediction for Dynamic Wireless Sensor Networks (동적 무선 센서 네트워크 상의 노드 이동성 예측을 융합한 에너지 효율기반 클러스트링 기법)

  • Jang, Woo-Hyun;Chang, Hyeong-Soo
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2011.06a
    • /
    • pp.412-415
    • /
    • 2011
  • 본 논문에서는 정적 무선 센서 네트워크상의 클러스터링 기법인 EECS(Energy Efficient Clustering Scheme)의 노드와 Base Station간의 거리를 고려한 head 선출 과정에 노드의 이동성 및 미래 위치 예측을 융합하여 확장한 새로운 동적환경상의 클러스터링 기법 EECS-M(Energy Efficient Clustering Scheme in Mobile wireless sensor networks)을 제안한다. 실험을 통하여 EECS-M이 동적 환경상의 LEACH-M, WCA 및 정적 환경상의 EECS, LEACH 클러스터링 알고리즘들에 비해 life time 및 life time 대비 네트워크의 잔여 에너지 측면에서 성능향상을 가진다는 것을 보인다.

Development of Energy Efficiency Routing Technique for Mobile Ad-hoc Sensor Network (모바일 에드-혹 센서 네트워크를 위한 에너지 효율적 라우팅 기법 개발)

  • Lee, YangMin;Lee, KwangYong;Lee, JaeKee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2009.11a
    • /
    • pp.547-548
    • /
    • 2009
  • The development of USN(Ubiquitous Sensor Network) technology is creating numerous application areas. Although a network configuration with fixed sensors was the norm in the past, the coexistence of mobile and fixed sensor nodes is a new trend. Fixed sensor networks focused on the energy efficiency of nodes, but the latest studies consider guaranteeing the mobility of nodes and maintaining their connectivity, while remaining energy efficient at the same time. This paper proposes a routing protocol for a mobile ad-hoc sensor network that improves the mobility, connectivity and energy efficiency of nodes while allowing for the management and maintenance of a large number of nodes even in a complex communication environment where mobile and fixed nodes coexist. An algorithm for multi-hop multi-paths, a technique for topology reconfiguration by node movement prediction and vibration sensors, path setting for a large number of nodes, and efficient data transfer technology have been introduced to implement the modified LEAHC-AOMDV protocol. Furthermore, the excellence of this protocol was verified through a comparative experiment with the conventional LEACH protocol.

A Multi-Chain Based Hierarchical Topology Control Algorithm for Wireless Sensor Networks

  • Tang, Hong;Wang, Hui-Zhu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.9
    • /
    • pp.3468-3495
    • /
    • 2015
  • In this paper, we present a multi-chain based hierarchical topology control algorithm (MCHTC) for wireless sensor networks. In this algorithm, the topology control process using static clustering is divided into sensing layer that is composed by sensor nodes and multi-hop data forwarding layer that is composed by leader nodes. The communication cost and residual energy of nodes are considered to organize nodes into a chain in each cluster, and leader nodes form a tree topology. Leader nodes are elected based on the residual energy and distance between themselves and the base station. Analysis and simulation results show that MCHTC outperforms LEACH, PEGASIS and IEEPB in terms of network lifetime, energy consumption and network energy balance.