• 제목/요약/키워드: LEACH Protocol

검색결과 146건 처리시간 0.021초

Clustering Scheme using Memory Restriction for Wireless Sensor Network (무선센서네트워크에서 메모리 속성을 이용한 클러스터링 기법)

  • Choi, Hae-Won;Yoo, Kee-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • 제34권1B호
    • /
    • pp.10-15
    • /
    • 2009
  • Recently, there are tendency that wireless sensor network is one of the important techniques for the future IT industry and thereby application areas in it are getting growing. Researches based on the hierarchical network topology are evaluated in good at energy efficiency in related protocols for wireless sensor network. LEACH is the best well known routing protocol for the hierarchical topology. However, there are problems in the range of message broadcasting, which should be expand into the overall network coverage, in LEACH related protocols. Thereby, this paper proposes a new clustering scheme to solve the co-shared problems in them. The basic idea of our scheme is using the inherent memory restrictions in sensor nodes. The results show that the proposed scheme could support the load balancing by distributing the clusters with a reasonable number of member nodes and thereby the network life time would be extended in about 1.8 times longer than LEACH.

The Algorithm for an Energy-efficient Particle Sensor Applied LEACH Routing Protocol in Wireless Sensor Networks (무선센서네트워크에서 LEACH 라우팅 프로토콜을 적용한 파티클 센서의 에너지 효율적인 알고리즘)

  • Hong, Sung-Hwa;Kim, Hoon-Ki
    • Journal of the Korea Society for Simulation
    • /
    • 제18권3호
    • /
    • pp.13-21
    • /
    • 2009
  • The sensor nodes that form a wireless sensor network must perform both routing and sensing roles, since each sensor node always has a regular energy drain. The majority of sensors being used in wireless sensor networks are either unmanned or operated in environments that make them difficult for humans to approach. Furthermore, since many wireless sensor networks contain large numbers of sensors, thus requiring the sensor nodes to be small in size and cheap in price, the amount of power that can be supplied to the nodes and their data processing capacity are both limited. In this paper, we proposes the WSN(Wireless Sensor Network) algorithm which is applied sensor node that has low power consumption and efficiency measurement. Moreover, the efficiency routing protocol is proposed in this paper. The proposed algorithm reduces power consumption of sensor node data communication. It has not researched in LEACH(Low-Energy Adaptive Clustering Hierarchy) routing protocol. As controlling the active/sleep mode based on the measured data by sensor node, the energy consumption is able to be managed. In the event, the data is transferred to the local cluster head already set. The other side, this algorithm send the data as dependent on the information such as initial and present energy, and the number of rounds that are transformed into cluster header and then transferred. In this situation, the assignment of each node to cluster head evenly is very important. We selected cluster head efficiently and uniformly distributed the energy to each cluster node through the proposed algorithm. Consequently, this caused the extension of the WSN life time.

Location Based Load Balancing Method for Cluster Routing in Wireless Sensor Networks (무선 센서 네트워크의 클러스터 라우팅에서 위치기반 부하 균등화 기법)

  • Yoo, Woo Sung;Kang, Sang Hyuk
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • 제41권8호
    • /
    • pp.942-949
    • /
    • 2016
  • Efficient routing protocols designed for Wireless Sensor Networks (WSN) can be extended and applied to Internet of Things (IoT) data routing, as IoT can be considered to be an extension from WSN. When the size of the data in IoT is often bigger than in conventional WSNs, existing cluster routing protocol such as LEACH may cause high data loss rate due to its incomplete load balancing. We present an enhanced LEACH-based protocol which can minimize the data loss which is an important performance measure in IoT. In our proposed protocol, the base station estimates the location of nodes by the trilateration technique to make sure optimal number of cluster heads and members in a deterministic manner. We evaluate our proposed protocol via computer simulations in terms of data loss rate and average network lifetime.

An Energy Efficient Routing Algorithm Based on Clustering in Wireless Sensor Network (무선센서 네트워크에서의 에너지 효율적인 클러스터링에 의한 라우팅 알고리즘)

  • Rhee, Chung-Sei
    • Convergence Security Journal
    • /
    • 제16권2호
    • /
    • pp.3-9
    • /
    • 2016
  • Recently, a lot of researches have been done to increase the life span of network using the energy efficient sensor node in WSN. In the WSN environment, we must use limited amount of energy and hardware. Therefore, it is necessary to design energy efficient communication protocol and use limited resources. Cluster based routing method such as LEACH and HEED get the energy efficient routing using data communication between cluster head and related member nodes. In this paper, we propose an energy efficient routing algorithm as well as performance result using simulation.

Adaptive method for selecting Cluster Head according to the energy of the sensor node

  • Kim, Yong Min;LEE, WooSuk;Kwon, Oh Seok;Jung, Kyedong;Lee, Jong-Yong
    • International Journal of Advanced Culture Technology
    • /
    • 제4권2호
    • /
    • pp.19-26
    • /
    • 2016
  • The most important factor in the wireless sensor network is the use of effective energy and increase in lifetime of the individual nodes in order to operate the wireless network more efficiently. For this purpose, various routing protocols have been developed. The LEACH such a protocol, well known among typical cluster routing protocols. However, when a cluster head is selected, the energy consumption may not be equal because it does not take into account the energy of the nodes. In this paper, we seek to improve the cluster head selection method according to residual energy of each sensor node. This method then adaptively applies the LEACH algorithm and the cluster head section algorithm with consideration of node energy in accordance with the energy of the whole sensor field. Through the simulation, it was found that this proposed algorithm was effective.

EEC-FM: Energy Efficient Clustering based on Firefly and Midpoint Algorithms in Wireless Sensor Network

  • Daniel, Ravuri;Rao, Kuda Nageswara
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권8호
    • /
    • pp.3683-3703
    • /
    • 2018
  • Wireless sensor networks (WSNs) consist of set of sensor nodes. These sensor nodes are deployed in unattended area which are able to sense, process and transmit data to the base station (BS). One of the primary issues of WSN is energy efficiency. In many existing clustering approaches, initial centroids of cluster heads (CHs) are chosen randomly and they form unbalanced clusters, results more energy consumption. In this paper, an energy efficient clustering protocol to prevent unbalanced clusters based on firefly and midpoint algorithms called EEC-FM has been proposed, where midpoint algorithm is used for initial centroid of CHs selection and firefly is used for cluster formation. Using residual energy and Euclidean distance as the parameters for appropriate cluster formation of the proposed approach produces balanced clusters to eventually balance the load of CHs and improve the network lifetime. Simulation result shows that the proposed method outperforms LEACH-B, BPK-means, Park's approach, Mk-means, and EECPK-means with respect to balancing of clusters, energy efficiency and network lifetime parameters. Simulation result also demonstrate that the proposed approach, EEC-FM protocol is 45% better than LEACH-B, 17.8% better than BPK-means protocol, 12.5% better than Park's approach, 9.1% better than Mk-means, and 5.8% better than EECPK-means protocol with respect to the parameter half energy consumption (HEC).

Advanced Adaptive Chain-Based EEACP Protocol Improvement Centered on Energy Efficiency in WSN Environment (WSN 환경에서 에너지 효율을 중심으로 한 적응형 체인 기반 EEACP 프로토콜 개선)

  • DaeKyun Cho;YeongWan Kim;GunWoo Park
    • The Journal of the Convergence on Culture Technology
    • /
    • 제10권3호
    • /
    • pp.879-884
    • /
    • 2024
  • Wireless sensor network technology is becoming increasingly important with the advancement of the Fourth Industrial Revolution. Consequently, various protocols such as LEACH, PEGASIS, and EEACP have been developed in an attempt to increase energy efficiency. However, the EEACP protocol still has room for improvement in terms of energy consumption during transmission. Particularly, inefficient paths associated with data reception settings may compromise the network's survivability. The proposed A-EEACP protocol optimizes data transmission direction around the sink node to reduce energy consumption and enhance the network's survivability.

Energy Efficient Routing in Wireless Sensor Networks

  • Cho, Seongsoo;Shrestha, Bhanu;Shrestha, Surendra;Lee, Jong-Yong;Hong, Suck-Joo
    • International journal of advanced smart convergence
    • /
    • 제3권2호
    • /
    • pp.1-5
    • /
    • 2014
  • Sensor nodes depend on batteries for energy source in Wireless Sensor Networks (WSNs). Low Energy Adaptive Clustering Hierarchy (LEACH) is a representative cluster-based routing protocol designed to ensure energy use efficiency whereas the virtual cluster exchange routing (VCR) information only with its closest node to build a network. In this paper, a protocol scheme was proposed wherein member nodes are designed to compare the currently sensed data with the previously sensed one and to switch to sleep mode when a match is achieved. The design is to help improve the transmission energy efficiency too.

Wireless sensor network analysis of suitable types for fixed facility surveillance (고정설비감시를 위한 무선센서네트워크 형태 분석)

  • Lee, Hoo-Rock;Rhyu, Keel-Soo;Chung, Kyung-Yul
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제40권1호
    • /
    • pp.50-54
    • /
    • 2016
  • A Wireless Sensor Network (WSN) is better than a conventional network for use in construction and Operations and Maintenance (O&M) because of its lower surveillance system cost. However, effective operation of a WSN is often difficult to obtain because the surveillance targets are usually fixed inside the building or underground. Therefore, this environmental constraint should be considered in the design of the WSN plant equipment surveillance system prior to installation. This study employs simulations of WSN-based fixed facility surveillance using the TinyOS TOSSIM simulator to investigate ideal types and setups of the WSN. Simulation target protocols included LEACH and flooding and gossiping protocols. The results show that the hierarchically-structured LEACH protocol demonstrated better load-balancing and efficiency than the flatly-structured flooding and gossiping protocol.

An Energy Efficient Cluster Formation Algorithm for Wireless Sensor Networks (무선 센서 네트워크를 위한 에너지 효율적인 클러스터 구성 알고리즘)

  • Han, Uk-Pyo;Lee, Hee-Choon;Chung, Young-Jun
    • The KIPS Transactions:PartC
    • /
    • 제14C권2호
    • /
    • pp.185-190
    • /
    • 2007
  • The efficient node energy utilization is one of important performance factors in wireless sensor networks because sensor nodes operate with limited battery power. To extend the lifetime of the wireless sensor networks, maintaining balanced power consumption between sensor nodes is more important than reducing each energy consumption of the sensor node in the network. In this paper, we proposed a cluster formation algorithm to extend the lifetime of the networks and to maintain a balanced energy consumption of nodes. To obtain it, we add a tiny slot in a round frame, which enables to exchange the residual energy messages between the base station (BS). cluster heads, and nodes. The performance of the proposed protocol has been examined and evaluated with the NS 2 simulator. As a result of simulation, we have confirmed that our proposed algorithm show the better performance in terms of lifetime than LEACH. Consequently, our proposed protocol can effectively extend the network lifetime without other critical overhead and performance degradation.