• Title/Summary/Keyword: LE(Learning Evaluation

Search Result 15, Processing Time 0.016 seconds

Intake and Evaluation of Commercial Kimchi and Perception of Learning Methods Making Kimchi among Female High School Students (여자 고등학생의 시판김치 섭취 실태 및 평가와 김치 담그기 교육에 대한 견해)

  • 이경희;박은숙
    • Korean Journal of Human Ecology
    • /
    • v.2 no.1
    • /
    • pp.89-98
    • /
    • 1999
  • Kimchi is a traditional food in Korea. It is a fermented food made by several vegetables. Kimchies have traditionally made at home, but the use of commercial Kimchies is increasing. The purpose of this study was to evaluate the intake and evaluation of commercial Kimchies and the perception of desirable learning methods making Kimchies among female high-school students. Three hundred and seventy one female high-school students living in Chonbuk province were participated in the survey. The results obtained were as follows: 1. The percentage of subjects who had consumed commercial Kimchies at least once was 49.7%. It was higher in the subjects living in the rural area(65.6%) than in the urban area(37.9%) at p${\le}$0.001. 2. Positive reasons for the consume of commercial Kimchies was: ‘saving time($4.11{\pm}0.74$)’, ‘convenience to buy when it is needed($4.03{\pm}0.78$)’, ‘variety($3.59{\pm}0.86$)’ and ‘looking good($3.21{\pm}0.98$)’. However, commercial Kimchi received low scores for: ‘sanitation($2.24{\pm}0.96$)’, ‘taste($2.84{\pm}0.96$)’, and ‘economy($2.89{\pm}1.02$)’. 90.5% of the subjects believed that the use of commercial Kimchi will be increased. 3. 24.3% of the subjects had an experience of making Kimchi alone, and 88.7% of the subjects had assisted their mother making Kimchi. 88.9% of the subjects reported that they would like to learn how to make Kimchi from their mothers. 84.0% of the subjects want to make Kimchi by themselves at home when they will be housewives. In conclusion, this report suggests that commercial Kimchi should be produced under more sanitary conditions and Kimchi producers should also develop a variety of tastes to match consumer's preferences. There is also a need for education for making high quality Kimchies in school programs of Home Economics. (Korean J of Human Ecology 2(1) : 89-98, 1999)

  • PDF

Classification of Soil Creep Hazard Class Using Machine Learning (기계학습기법을 이용한 땅밀림 위험등급 분류)

  • Lee, Gi Ha;Le, Xuan-Hien;Yeon, Min Ho;Seo, Jun Pyo;Lee, Chang Woo
    • Journal of Korean Society of Disaster and Security
    • /
    • v.14 no.3
    • /
    • pp.17-27
    • /
    • 2021
  • In this study, classification models were built using machine learning techniques that can classify the soil creep risk into three classes from A to C (A: risk, B: moderate, C: good). A total of six machine learning techniques were used: K-Nearest Neighbor, Support Vector Machine, Logistic Regression, Decision Tree, Random Forest, and Extreme Gradient Boosting and then their classification accuracy was analyzed using the nationwide soil creep field survey data in 2019 and 2020. As a result of classification accuracy analysis, all six methods showed excellent accuracy of 0.9 or more. The methods where numerical data were applied for data training showed better performance than the methods based on character data of field survey evaluation table. Moreover, the methods learned with the data group (R1~R4) reflecting the expert opinion had higher accuracy than the field survey evaluation score data group (C1~C4). The machine learning can be used as a tool for prediction of soil creep if high-quality data are continuously secured and updated in the future.

Evaluation Factors Influencing Construction Price Index in Fuzzy Uncertainty Environment

  • NGUYEN, Phong Thanh;HUYNH, Vy Dang Bich;NGUYEN, Quyen Le Hoang Thuy To
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.8 no.2
    • /
    • pp.195-200
    • /
    • 2021
  • In recent years, Vietnam's economic growth rate has been attributed to the growth of many well-managed industries within Southeast Asia. Among them is the civil construction industry. Construction projects typically take a long time to complete and require a huge budget. Many socio-economic variables and factors affect total construction project costs due to market fluctuations. In recent years, crucial socioeconomic development indicators of construction reached a fairly high growth rate. Also, most infrastructure and construction projects have a high degree of complexity and uncertainty. This makes it challenging to predict the accurate project price. These challenges raise the need to recognize significant factors that influence the construction price index of civil buildings in Vietnam, both micro and macro. Therefore, this paper presents critical factors that affect the construction price index using the fuzzy extent analysis process in an uncertain environment. This proposed quantitative model is expected to reflect the uncertainty in the process of evaluating and ranking the influencing factors of the construction price index in Vietnam. The research results would also allow project stakeholders to be more informed of the factors affecting the construction price index in the context of Vietnam's civil construction industry. They also enable construction contractors to estimate project costs and bid rates better, enhancing their project and risk management performance.

Applying the Fuzzy Decision-Making Method for Program Evaluation and Management Policy of Vietnamese Higher Education

  • TONG, Kiet Hao;NGUYEN, Quyen Le Hoang Thuy To;NGUYEN, Tuyen Thi Mong;NGUYEN, Phong Thanh;VU, Ngoc Bich
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.7 no.9
    • /
    • pp.719-726
    • /
    • 2020
  • Education policy is a dynamic process featuring social development trends. The world countries have focused their education program on empowering the learners for future life and work. This paper aims to assess the higher education curriculum based on a survey of 280 students, employers, alumni, and lecturers in both social sciences and natural sciences in Ho Chi Minh City, Vietnam. The fuzzy decision-making method, namely the Fuzzy Extent Analysis Method (F-EAM), was applied to measure the relative weight of each parameter. Seven factors under the curriculum development have been put in the ranking. Input with emphasis on foreign language was the highest priority in curriculum development, given the expected demand of the labor market. Objective and learning outcome and teaching activities ranked second and third, respectively. The traditional triangle of teaching content, methodology, and evaluation and assessment are still proven their roles, but certain modifications have been defined in the advanced curriculum. Teaching facilities had the least weight among the seven dimensions of curriculum development. The findings are helpful for education managers to efficiently allocate scarce resources to reform the curriculum to bridge the undergraduate quality gap between labor supply and demand, meeting the dynamic trends of social development.

Predicting concrete's compressive strength through three hybrid swarm intelligent methods

  • Zhang Chengquan;Hamidreza Aghajanirefah;Kseniya I. Zykova;Hossein Moayedi;Binh Nguyen Le
    • Computers and Concrete
    • /
    • v.32 no.2
    • /
    • pp.149-163
    • /
    • 2023
  • One of the main design parameters traditionally utilized in projects of geotechnical engineering is the uniaxial compressive strength. The present paper employed three artificial intelligence methods, i.e., the stochastic fractal search (SFS), the multi-verse optimization (MVO), and the vortex search algorithm (VSA), in order to determine the compressive strength of concrete (CSC). For the same reason, 1030 concrete specimens were subjected to compressive strength tests. According to the obtained laboratory results, the fly ash, cement, water, slag, coarse aggregates, fine aggregates, and SP were subjected to tests as the input parameters of the model in order to decide the optimum input configuration for the estimation of the compressive strength. The performance was evaluated by employing three criteria, i.e., the root mean square error (RMSE), mean absolute error (MAE), and the determination coefficient (R2). The evaluation of the error criteria and the determination coefficient obtained from the above three techniques indicates that the SFS-MLP technique outperformed the MVO-MLP and VSA-MLP methods. The developed artificial neural network models exhibit higher amounts of errors and lower correlation coefficients in comparison with other models. Nonetheless, the use of the stochastic fractal search algorithm has resulted in considerable enhancement in precision and accuracy of the evaluations conducted through the artificial neural network and has enhanced its performance. According to the results, the utilized SFS-MLP technique showed a better performance in the estimation of the compressive strength of concrete (R2=0.99932 and 0.99942, and RMSE=0.32611 and 0.24922). The novelty of our study is the use of a large dataset composed of 1030 entries and optimization of the learning scheme of the neural prediction model via a data distribution of a 20:80 testing-to-training ratio.