• Title/Summary/Keyword: LDPC-codes

Search Result 213, Processing Time 0.016 seconds

An Improved Decoding Scheme of LCPC Codes (LCPC 부호의 개선된 복호 방식)

  • Cheong, Ho-Young
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.4
    • /
    • pp.430-435
    • /
    • 2018
  • In this paper, an improved decoding scheme for low-complexity parity-check(LCPC) code with small code length is proposed. The LCPC code is less complex than the turbo code or low density parity check(LDPC) code and requires less memory, making it suitable for communication between internet-of-things(IoT) devices. The IoT devices are required to have low complexity due to limited energy and have a low end-to-end delay time. In addition, since the packet length to be transmitted is small and the signal processing capability of the IoT terminal is small, the LCPC coding system should be as simple as possible. The LCPC code can correct all single errors and correct some of the two errors. In this paper, the proposed decoding scheme improves the bit error rate(BER) performance without increasing the complexity by correcting both errors using the soft value of the modulator output stage. As a result of the simulation using the proposed decoding scheme, the code gain of about 1.1 [dB] was obtained at the bit error rate of $10^{-5}$ compared with the existing decoding method.

A Perceptually-Adaptive High-Capacity Color Image Watermarking System

  • Ghouti, Lahouari
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.1
    • /
    • pp.570-595
    • /
    • 2017
  • Robust and perceptually-adaptive image watermarking algorithms have mainly targeted gray-scale images either at the modeling or embedding levels despite the widespread availability of color images. Only few of the existing algorithms are specifically designed for color images where color correlation and perception are constructively exploited. In this paper, a new perceptual and high-capacity color image watermarking solution is proposed based on the extension of Tsui et al. algorithm. The $CIEL^*a^*b^*$ space and the spatio-chromatic Fourier transform (SCFT) are combined along with a perceptual model to hide watermarks in color images where the embedding process reconciles between the conflicting requirements of digital watermarking. The perceptual model, based on an emerging color image model, exploits the non-uniform just-noticeable color difference (NUJNCD) thresholds of the $CIEL^*a^*b^*$ space. Also, spread-spectrum techniques and semi-random low-density parity check codes (SR-LDPC) are used to boost the watermark robustness and capacity. Unlike, existing color-based models, the data hiding capacity of our scheme relies on a game-theoretic model where upper bounds for watermark embedding are derived. Finally, the proposed watermarking solution outperforms existing color-based watermarking schemes in terms of robustness to standard image/color attacks, hiding capacity and imperceptibility.

Adaptive Hard Decision Aided Fast Decoding Method in Distributed Video Coding (적응적 경판정 출력을 이용한 고속 분산 비디오 복호화 기술)

  • Oh, Ryang-Geun;Shim, Hiuk-Jae;Jeon, Byeung-Woo
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.6
    • /
    • pp.66-74
    • /
    • 2010
  • Recently distributed video coding (DVC) is spotlighted for the environment which has restriction in computing resource at encoder. Wyner-Ziv (WZ) coding is a representative scheme of DVC. The WZ encoder independently encodes key frame and WZ frame respectively by conventional intra coding and channel code. WZ decoder generates side information from reconstructed two key frames (t-1, t+1) based on temporal correlation. The side information is regarded as a noisy version of original WZ frame. Virtual channel noise can be removed by channel decoding process. So the performance of WZ coding greatly depends on the performance of channel code. Among existing channel codes, Turbo code and LDPC code have the most powerful error correction capability. These channel codes use stochastically iterative decoding process. However the iterative decoding process is quite time-consuming, so complexity of WZ decoder is considerably increased. Analysis of the complexity of LPDCA with real video data shows that the portion of complexity of LDPCA decoding is higher than 60% in total WZ decoding complexity. Using the HDA (Hard Decision Aided) method proposed in channel code area, channel decoding complexity can be much reduced. But considerable RD performance loss is possible according to different thresholds and its proper value is different for each sequence. In this paper, we propose an adaptive HDA method which sets up a proper threshold according to sequence. The proposed method shows about 62% and 32% of time saving, respectively in LDPCA and WZ decoding process, while RD performance is not that decreased.