• 제목/요약/키워드: LDA research support service

검색결과 3건 처리시간 0.021초

토픽모델링을 활용한 국내외 연구지원서비스 연구동향 분석 (Analyzing Research Trends on Research Support Services Using Topic Modeling)

  • 김지수;정유경
    • 정보관리학회지
    • /
    • 제41권3호
    • /
    • pp.309-330
    • /
    • 2024
  • 본 연구는 토픽모델링을 활용하여 국내외 연구지원서비스에 대한 주요 연구 주제를 파악하고 비교·분석함으 로써 향후 국내 연구의 방향을 제시하는 것을 목적으로 한다. 분석 결과, 오픈 액세스와 대학도서관의 연구지원서비스, 교육과 관련된 주제들이 나타났으며, 국내에서는 12개, 국외에서는 15개의 주요 연구주제들이 추출되었다. 이를 바탕으로 오픈 액세스 분야에서는 디지털 기술, 데이터 관리, 대학도서관의 연구 데이터 관리, 디지털 연구지원서비스 등에 대한 심층 연구가 필요한 것으로 나타났으며, 대학도서관과 관련해서는 디지털 연구지원서비스를 세부 유형별로 분석하는 연구, 연구 데이터 관리와 관련한 정보 전문가의 역할 등에 대한 연구가 필요함을 확인하였다. 본 연구는 기존 연구를 종합적으로 분석하여 미래 연구방향성에 대한 근거를 마련했다는 점에서 의의가 있으며, 향후 국내 연구지원서비스 연구를 수행할 때 기초자료로 활용될 수 있을 것으로 기대된다.

토픽모델링 기반의 국내외 미래 자동차 연구동향 비교 분석: CASE 키워드 중심으로 (Analysis of domestic and foreign future automobile research trends based on topic modeling)

  • 정호정;김건욱;김나경;장원준;정원웅;박대영
    • 디지털융복합연구
    • /
    • 제20권5호
    • /
    • pp.463-476
    • /
    • 2022
  • 과거 산업화 이후 자동차 산업은 내연기관 중심의 지속적인 성장을 하였으나, 최근 4차 산업혁명으로 큰 변화를 맞이하고 있다. 대다수의 기업들이 전기 자동차, 자율주행으로의 전환을 준비하고 있으며, 현시점에서 국내와 국외의 미래 자동차 연구동향을 비교 분석할 필요가 있다. 이에 본 연구에서는 미래 자동차 트렌드를 대표하는 CASE(Connectivity, Autonomous, Sharing, Electrification)와 관련된 키워드가 포함된 국내 4,002건, 국외 68,372건 논문을 수집하여 LDA 알고리즘 기반의 토픽모델링을 수행하였으며, 국내외 미래 자동차 연구동향을 비교 분석하여 정책적 시사점을 제시하였다. 분석 결과 국내의 경우 교통 인프라, 도시 내 교통효율, 교통정책 등과 같은 거시적인 측면에서의 연구가 주를 이루는 것으로 나타났으며, 국외는 객체인식, 사물인터넷, 전기자동차 소음 등의 차량기술과 관련된 연구가 활성화되고 있음을 확인할 수 있었다. 이를 통해 국내 공유자동차 부문에 있어 MaaS(Mobility-as-a-Service)와 관련한 정부의 기술지원이 필요하고 교통수단별 데이터 개방 필요성 등에 대하여 제시하였고, 이러한 분석결과는 미래 자동차 산업을 위한 기초자료로 활용될 수 있을 것으로 판단된다.

텍스트마이닝을 활용한 감정노동 연구 동향 분석 (Research Trends on Emotional Labor in Korea using text mining)

  • 조경원;한나영
    • 한국산업정보학회논문지
    • /
    • 제26권6호
    • /
    • pp.119-133
    • /
    • 2021
  • 텍스트마이닝을 이용하여 연구동향을 파악하는 연구가 많은 분야에서 이루어지고 있으나 감정노동 분야에서는 텍스트마이닝을 사용하여 연구 동향을 파악한 연구는 없는 실정이다. 본 연구는 텍스트마이닝을 이용하여 2004년부터 2019년까지 한국연구재단의 한국학술지인용색인(KCI)에서 '감정 노동'이라는 주제어가 포함된 1,465건의 검색된 논문을 심층적으로 분석하여 감정노동 연구 동향을 파악하고자 한다. LDA분석으로 주제들을 추출하고, 토픽의 비중과 유사도를 확인하기 위해 IDM분석을 실시하였다. 이를 통해 유사도가 높은 토픽들의 의미유용성을 고려하여 토픽의 통합분석을 실시하였다. 연구토픽은 11개로 구분되며, 감정노동의 스트레스(12.2%), 감정노동과 사회적 지지(12.0%), 고객서비스 종사자의 감정노동(10.9%), 감정노동과 회복탄력성(10.2%), 감정노동전략(9.2%), 콜센터상담사의 감정노동(9.1%), 감정노동의 결과(9.0%), 감정노동과 직무소진(7.9%), 감성지능(7.1%), 예비돌봄서비스 종사자의 감정노동(6.6%), 감정노동과 조직문화(5.9%) 순의 비중으로 나타났다. 토픽모델링과 트렌드분석을 통하여 감정노동의 연구동향과 학문적 추이를 분석함으로써 감정노동 연구의 나아갈 방향을 제시하고자 하며 감정노동에 관한 실무적인 전략을 수립할 수 있기를 기대한다.