The Journal of The Korea Institute of Intelligent Transport Systems
/
v.20
no.4
/
pp.57-70
/
2021
This study aims to investigate the security demand about the traffic policing by analyzing civil complaints. Latent Dirichlet Allocation(LDA) was applied to extract key topics for 2,062 civil complaints data related to traffic policing from e-People. And additional analysis was made of reports of violations, which accounted for a high proportion. In this process, the consistency and convergence of keywords and representative documents were considered together. As a result of the analysis, complaints related to traffic police could be classified into 41 topics, including traffic safety facilities, passing through intersections(signals), provisional impoundment of vehicle plate, and personal mobility. It is necessary to strengthen crackdowns on violations at intersections and violations of motorcycles and take preemptive measures for the installation and operation of unmanned traffic control equipments, crosswalks, and traffic lights. In addition, it is necessary to publicize the recently amended laws a implemented policies, e-fine, procedure after crackdown.
In this paper, numerical values are derived using topic modeling among data-based evaluation methodologies discussed by various research institutes. In addition, we will focus on the ICT field to see if there is a difference in policy perception between the national R&D project and standing committee. First, we create model for classifying ICT documents by learning R&D project data using HAN model. And we perform LDA topic modeling analysis on ICT documents classified by applying the model, compare the distribution with the topics derived from the R&D project data and proceedings of standing committees. Specifically, a total of 26 topics were derived. Also, R&D project data had professionally topics, and the standing committee-discuss relatively social and popular issues. As the difference in perception can be numerically confirmed, it can be used as a basic study on indicators that can be used for future policy or project evaluation.
Journal of The Korean Association of Information Education
/
v.26
no.5
/
pp.439-448
/
2022
This study aims to search for education-related datasets provided by public data portals and examine what data types are constructed through classification using topic modeling methods. Regarding the data of the public data portal, 3,072 cases of file data in the education field were collected based on the classification system. Text mining analysis was performed using the LDA-based topic modeling method with stopword processing and data pre-processing for each dataset. Program information and student-supporting notifications were usually provided in the pre-classified dataset for education from the data portal. On the other hand, the characteristics of educational programs and supporting information for the disabled, parents, the elderly, and children through the perspective of lifelong education were generally indicated in the dataset collected by searching for education. The results of data analysis through this study show that providing sufficient educational information through the public data portal would be better to help the students' data science-based decision-making and problem-solving skills.
There is increasing interest in text analysis based on unstructured data such as articles and comments, questions and answers. This is because they can be used to identify, evaluate, predict, and recommend features from unstructured text data, which is the opinion of people. The same holds true for TEL, where the MOOC service has evolved to automate debating, questioning and answering services based on the teaching-learning support system in order to generate question topics and to automatically classify the topics relevant to new questions based on question and answer data accumulated in the system. Therefore, in this study, we propose topic modeling using LDA to automatically classify new query topics. The proposed method enables the generation of a dictionary of question topics and the automatic classification of topics relevant to new questions. Experimentation showed high automatic classification of over 0.7 in some queries. The more new queries were included in the various topics, the better the automatic classification results.
최근 AI 를 비롯한 데이터 기반의 비즈니스 모델 증가에 따라, 데이터 유출 등의 기업 정보보안 사고가 빈번하게 발생하고 있다. 해당 사고들은 종종 법적 분쟁으로 이어지며, 이는 기업의 막대한 경제적 손실을 초래하며 정보보안 사고를 선제적으로 대비하기 위한 기술적, 관리적 조치 마련을 위한 기업의 관심이 증가하고 있다. 이에 본 연구에서는 최근 들어 급증한 기업의 정보보안 관련 판례를 대상으로 BERTopic, Top2Vec, LDA 를 활용하여 토픽 모델링을 수행하여 산출된 토픽 기반의 기업 정보보안 사고를 유형화하고자 한다. 전통적으로 각각 다른 법적 요소와 판결을 담고 있어, 유사 사건 간의 비교 및 분석이 어려운 판례 데이터의 특징을 반영하여 본 연구에서는 앞서 제시된 3가지의 모델을 각각 적용한다. 이를 통하여 각 모델 수행 결과의 성능 비교를 통하여 기업의 정보보안 사건의 유형화 및 동향을 파악하는 동시에 판례 데이터를 분석하기 위한 최적의 모델을 확인한다.
Local issues that occur in cities typically garner great attention from the public. While local governments strive to resolve these issues, it is often difficult to effectively eliminate them all, which leads to complaints. In tackling these issues, it is imperative for local governments to use big data to identify the nature of complaints, and proactively provide solutions. This study applies the LDA topic modeling technique to research and analyze trends and patterns in complaints filed online. To this end, 9,625 cases of online complaints submitted to the city of Busan from 2015 to 2017 were analyzed, and 20 topics were identified. From these topics, key topics were singled out, and through analysis of quarterly weighting trends, four "hot" topics(Bus stops, Taxi drivers, Praises, and Administrative handling) and four "cold" topics(CCTV installation, Bus routes, Park facilities including parking, and Festivities issues) were highlighted. The study conducted big data analysis for the identification of trends and patterns in civil affairs and makes an academic impact by encouraging follow-up research. Moreover, the text mining technique used for complaint analysis can be used for other projects requiring big data processing.
The purpose of this study was to analyze user reviews of running applications using text mining. This study used user reviews of Nike Run Club and Runkeeper in the Google Play Store using the selenium package of python3 as the analysis data, and separated the morphemes by leaving only Korean nouns through the OKT analyzer. After morpheme separation, we created a rankNL dictionary to remove stopwords. To analyze the data, we used TF, TF-IDF and LDA topic modeling in text mining. The results of this study are as follows. First, the keywords 'record', 'app', and 'workout' were identified as the top keywords in the user reviews of Nike Run Club and Runkeeper applications, and there were differences in the rankings of TF and TF-IDF. Second, the LDA topic modeling of Nike Run Club identified the topics of 'basic items', 'additional features', 'errors', and 'location-based data', and the topics of Runkeeper identified the topics of 'errors', 'voice function', 'running data', 'benefits', and 'motivation'. Based on the results, it is recommended that errors and improvements should be made to contribute to the competitiveness of the application.
Journal of the Microelectronics and Packaging Society
/
v.27
no.2
/
pp.53-58
/
2020
Analysis of electric semiconductor packaging technology for electric vehicles was performed. Topic modeling using LDA technique was performed by collecting valid patents by deriving valid patents. It was classified into 20 topics, and the definition of technology was defined through extracted words for each topic. In order to analyze the trend of each topic, the trend of power semiconductor packaging technology was analyzed by deriving hot and cold topics by topic through regression analysis on frequency by year. The package structure technology according to the withstand voltage, the input/output-related control technology and the heat dissipation technology were derived as the hot topic technology, and the inductance reduction technology was derived as the cold topic technology.
본고에서는 소셜 빅데이터에서 공공안전에 위협되고 사회적으로 이슈가 되는 재난사건을 추출하기 위한 방법으로 소셜 네트워크상에서 사용자 행동 분석과 시간분석을 반영한 토픽 모델링 기법을 알아본다. 소셜 사용자의 글 수, 리트윗 반응, 활동주기, 팔로워 수, 팔로잉 수 등 사용자의 행동 분석을 통하여 활동적이고 신뢰성 있는 사용자를 분류함으로써 트윗에서 스팸성과 광고성을 제외하고 이슈에 대해 신뢰성 높은 사용자가 쓴 트윗을 중요하게 반영한다. 또한, 트위터 데이터에서 새로운 이슈가 발생한 것을 탐지하기 위해 시간별 핵심어휘 빈도의 분포 변화를 측정하고, 이슈 트윗에 대해 감성 표현 분석을 통해 핵심이슈에 대해 사건 어휘를 추출한다. 소셜 빅데이터의 특성상 같은 날짜에 여러 이슈에 대한 트윗이 많이 생성될 수 있기 때문에, 트윗들을 토픽별로 그룹핑하는 것이 필요하므로, 최근 많이 사용되고 있는 LDA 토픽모델링 기법에 시간 특성과 사용자 특성을 분석한 시간상에서의 중요한 사건 어휘를 반영하고, 해당이슈에 대한 신뢰성 있는 사용자가 쓴 트윗을 중요시 반영하도록 토픽모델링 기법을 개선한 소셜 사건 탐지 방법에 대해 알아본다.
Journal of the Korean Society for information Management
/
v.38
no.4
/
pp.129-152
/
2021
This study proposed a plan to develop wearable devices suitable for female college students by analyzing female college students' perceptions and preferences for wearable devices and their needs for health care using topic modeling and network analysis techniques. To this end, 2,457 posts related to health care and wearable devices were collected from the community used by S Women's University students. After preprocessing the collected posts and comment data, LDA-based topic modeling was performed. Through topic modeling techniques, major issues of female college students related to health care and wearable devices are derived, and bi-gram analysis and network analysis are performed on posts containing related keywords to understand female college students' views on wearable devices.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.