• Title/Summary/Keyword: LCD source driver IC

Search Result 14, Processing Time 0.019 seconds

Mixed Driving Circuit for QVGA-Scale LDI (QVGA급 LDI를 위한 혼합 구동 회로)

  • Ko, Young-Keun;Kwon, Yong-Jung;Lee, Sung-Woo;Kim, Hak-Yun;Choi, Ho-Yong
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.573-574
    • /
    • 2008
  • In this paper, we propose a mixed driving circuit for the source driver of QVGA-scale TFT-LCD driver IC to reduce the area of the source driver. In the mixed driving circuit, graphic data pass or go through the mixed channel driver whether RGB data are the same or not. The mixed driving circuit has been designed in transistor level using the 0.35um CMOS technology and has been verified using Hspice.

  • PDF

Dual-Level LVDS Circuit with Common Mode Bias Compensation Technique for LCD Driver ICs (공통모드 전압 보정기능을 갖는 LCD 드라이버용 듀얼모드 LVDS 전송회로)

  • Kim Doo-Hwan;Kim Ki-Sun;Cho Kyoung-Rok
    • The Journal of the Korea Contents Association
    • /
    • v.6 no.3
    • /
    • pp.38-45
    • /
    • 2006
  • A dual-level low voltage differential signalling (DLVDS) circuit is proposed aiming at reducing transmission lines for a LCD driver IC. We apply two data to the proposed DLVDS circuit as inputs. Then, the transmitter converts two inputs to two kinds of fully differential signals. In this circuit, two transmission lines are sufficient to transfer two inputs while keeping the LVDS feature. However, the circuit has a common mode bias fluctuation due to difference of the input bias and the reference bias. We compensate the common mode bias fluctuation using a feedback circuit of the current source bias. The receiver recovers the original input data through a level decoding circuit. We fabricated the proposed circuit using $0.25{\mu}m$ CMOS technology. The simulation results of proposed circuit shows 1-Gbps/2-line data rate and 35mW power consumption at 2.5V supply voltage, respectively.

  • PDF

An Automatic Back-Light Brightness Control System of Mobile Display Using Built-In Photo Sensor (내장형 광센서를 이용한 모바일 디스플레이의 자동 광원 밝기 조정 시스템)

  • Ryu, Jee-Youl;Noh, Seok-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.05a
    • /
    • pp.713-716
    • /
    • 2008
  • This paper presents an automatic back-light brightness control system for mobile displays. One of the most important factors in mobile display is the power consumption due to the limited and movable power source. More than 80% of power of the LCD display is consumed by LED bark-light unit (BLU). The target brightness also becomes higher because of its moving picture and high resolution image, so there are some side effects for not only excessive power consumption but also ergonomic inconvenience in dark environment. To prevent this discomfort and reduce power consumption, this paper proposes automatic brightness control (ABC) technique in mobile displays. Developed system contains TFT-LCD panel with built-in photo sensor, driver IC capable of controlling photo sensor, and BLU. Since the photo sensor array built in panel detects automatically outdoor ambient light intensity, the power of BLU in dark environment is reduced. Developed ABC system showed reduced power consumption of 50% in dark environment. We believe that the proposed system is very useful to control power of mobile TFT-LCD.

  • PDF

Low Power Dual-Level LVDS Technique using Current Source Switching (전류원 스위칭에 의한 저전력 듀얼레벨 차동신호 전송(DLVDS) 기법)

  • Kim, Ki-Sun;Kim, Doo-Hwan;Cho, Kyoung-Rok
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.1
    • /
    • pp.59-67
    • /
    • 2007
  • This paper presents a low power dual-level low voltage differential signaling (DLVDS) technique using current source switching for LCD driver ICs in portable products. The transmitter makes dual level signal that has two different level signal 400mVpp and 250mVpp while keeping the advantages of LVDS. The decoding circuit recovers the primary signal from DLVDS. The low power DLVDS is implemented using a $0.25{\mu}m$ CMOS process under 2.5V supply. The proposed circuit shows 800Mbps/2-line data rate and 9mW, 11.5mW power consumptions in transmitter and receiver, respectively. The proposed DLVDS scheme reduce power consumption dramatically compare with conventional one.