• Title/Summary/Keyword: LCD driver

Search Result 162, Processing Time 0.029 seconds

The PLD Design of New Scheme LCD Driver Circuit (새로운 LCD 구동회로의 PLD 설계)

  • 이주현;이승호
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.947-950
    • /
    • 1999
  • The PLD design of new scheme LCD driver circuit is described in this paper. A new scheme LCD driver circuit doesn't used microprocessor for the convenience of users. A new scheme LCD driver circuit consists of 4 main parts, that is, a serial/parallel communication control block part, a LCD controller part, a LCD driver part and a RAM/ROM control block part. The validity and efficiency of the proposed LCD driver circuit have been verified by simulation and by ALTERA EPM7192SQC160-15 PLD implementation in VHDL. After comparing this LCD driver circuit to specify it was verified that the developed LCD driver circuit showed has good performances, such as low cost, convenience of users.

  • PDF

Development of Driver IC on TFT-based Liquid Crystal Display

  • Pan, Po-Chuan;Koo, Horng-Show
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.381-384
    • /
    • 2005
  • Driver IC is one of the key components on the LCD monitor and LCD/TV. The function of the driver IC is to transfer and forward the input signals to LCD panel module. Inside driver IC, there are several operating units which process the input signals and generate the appropriate size and resolution to the LCD panel module. LCD panel module will display these input signals. However, there are some difficulties which driver IC designer, LCD monitor and LCD/TV maker will face. Thus, this article addresses the function and difficulties on driver IC.

  • PDF

Driver electronics for commercialization of emerging display technologies

  • Wai-Yan, Stephen
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.298-302
    • /
    • 2006
  • Driver electronics for emerging display technologies are presented for OLED's, microdisplays, electrophoretic displays & bi-stable LCD's. Key factors for commercialization of these technologies are derived from the experience of the LCD's, including driver IC designs, wafer and assembly processes & applications.

  • PDF

Design of Integrated a-Si:H Gate Driver Circuit with Low Noise for Mobile TFT-LCD

  • Lee, Yong-Hui;Park, Yong-Ju;Kwag, Jin-Oh;Kim, Hyung-Guel;Yi, Jun-Sin
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.822-824
    • /
    • 2007
  • This paper investigated a gate driver circuit with amorphous silicon for mobile TFT-LCD. In the conventional circuit, the fluctuation of the off-state voltage causes the fluctuation of gate line voltages in the panel and then image quality becomes worse. Newly designed gate driver circuit with dynamic switching inverter and carry out signal reduce the fluctuation of the off-state voltage because dynamic switching inverter is holding the off-state voltage and the delay of carry signal is reduced. The simulation results show that the proposed a-Si:H gate driver has low noise and high stability compared with the conventional one.

  • PDF

ASG(Amorphous Silicon TFT Gate driver circuit)Technology for Mobile TFT-LCD Panel

  • Jeon, Jin;Lee, Won-Kyu;Song, Jun-Ho;Kim, Hyung-Guel
    • Journal of Information Display
    • /
    • v.5 no.2
    • /
    • pp.1-5
    • /
    • 2004
  • We developed an a-Si TFT-LCD panel with integrated gate driver circuit using a standard 5-MASK process. To minimize the effect of the a-Si TFT current and LC's capacitance variation with temperature, we developed a new a-Si TFT circuit structure and minimized coupling capacitance by changing vertical architecture above gate driver circuit. Integration of gate driver circuit on glass substrate enables single chip and 3-side free panel structure in a-Si TFT-LCD of QVGA ($240{\times}320$) resolution. And using double ASG structure the dead space of TFT-LCD panel could be further decreased.

ASG(Amorphous Silicon TFT Gate driver circuit) Technology for Mobile TFT-LCD Panel

  • Jeon, Jin;Lee, Won-Kyu;Song, Jun-Ho;Kim, Hyung-Guel
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.395-398
    • /
    • 2004
  • We developed an a-Si TFT-LCD panel with integrated gate driver circuit using a standard 5-MASK process. To minimize the effect of the a-Si TFT current and LC's capacitance variation with temperature, we developed a new a-Si TFT circuit structure and minimized coupling capacitance by changing vertical architecture above gate driver circuit. Integration of gate driver circuit on glass substrate enables single chip and 3-side free panel structure in a-Si TFT-LCD of QVGA(240$^{\ast}$320) resolution. And using double ASG structure the dead space of TFT-LCD panel could be further decreased.

  • PDF

?Color STN (CSTN) LCD Driver Integrated Circuit with Sense Amplifier of Non-Volatile Memory

  • Shin, Chang-Hee;Cho, Ki-Seok;Lee, Yong-Sup;Lee, Jae-Hoon;Sohn, Ki-Sung;Kwon, Oh-Kyong
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.6 no.2
    • /
    • pp.87-89
    • /
    • 2006
  • This paper proposes a sense amplifier with non-volatile memory in order to improve the image quality of LCD by enhancing the matching of the driving voltages between the panel and driver. The sense amplifier having a wide sensing margin and fast response adjusts LCD driver voltage of display driver. The CSTN-LCD with the sense amplifier results improved image quality than that with conventional 6 bit column driver without it.

Development of 200ppi SOG-LCD

  • Kim, Chul-Ho;Kim, Chul-Min;Moon, Kook-Chul;Park, Kee-Chan;Kim, Il-Gon;Joo, Sueng-Yong;Park, Tae-Hyeong;Maeng, Ho-Suk;Jung, Eu-Jin;Kim, Chi-Woo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.85-88
    • /
    • 2004
  • 2-inch qVGA (240${\times}$320) TFT-LCD with integrated 6-bit source driver is reported. The pixel density is over than 200ppi and the operation frequency is about 2.8MHz. In order to improve TFT characteristics, TS-SLS (Two-Shot Sequential Lateral Solidification) technology has been employed. A 1:6 demultiplexing scheme has been successfully implemented in the source driver owing to the superb characteristics of the TS-SLS TFTs, which resulted in small driver circuit area.

  • PDF

Ultrasonic ACF Bonding Technique for Mounting LCD Driver ICs (LCD 구동 IC의 실장을 위한 초음파 ACF접합 기술)

  • Joung, Sang-Won;Yun, Won-Soo;Kim, Kyung-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.6
    • /
    • pp.543-547
    • /
    • 2008
  • In the paper, we develop the ultrasonic bonding technique for LCD driver chips having small size and high pin-density. In general, the mounting technology for LCD driver ICs is a thermo-compression method utilizing the ACF (An-isotropic Conductive Film). The major drawback of the conventional approach is the long process time. It will be shown that the conventional ACF method based on thermo-compression can be remarkably enhanced by employing the ultrasonic bonding technique in terms of bonding time. The proposed approach is to apply the ultrasonic energy together with the thermo-compression methodology for the ACF bonding process. To this end, we design a bonding head that enables pre-heating, pressure and ultrasonic excitation. Through the bonding experiments mainly with LCD driver ICs, we present the procedures to select the best combination of process parameters with analysis. We investigate the effects of bonding pressure, bonding time, pre-heating temperature before bonding, and the power level of ultrasonic energy. The addition of ultrasonic excitation to the thermo-compression method reduces the pre-heating temperature and the bonding process time while keeping the quality bonding between the LCD pad and the driver IC. The proposed concept will be verified and demonstrated with experimental results.

High Color Depth Driver LSIs for TFT-LCDs

  • Jang, Chul-Sang;Yoo, Juhn-Suk;Lee, Dong-Hoon;Kim, Jong-Hoon;Chung, In-Jae;Kim, Jin-Ho;Choi, Jin-Chul;Lee, Jae-Sic;Kim, Seon-Yung;Kwon, Oh-Kyong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.657-658
    • /
    • 2005
  • We designed 10bit source driver LSI, then the high color depth and the low power consumption are realized thru it. It is adopted mini-LVDS receiver with high speed data transmission and good data recovery performance, Hybrid type DAC to reduce decoder size and OP-AMP with low power consumption and high slew rate. In addition we show our results of the 10-bit gray scale TFT-LCD source driver for 42inch diagonal size and WXGA resolution TFT-LCD TV applications.

  • PDF