• Title/Summary/Keyword: LCD Process

Search Result 634, Processing Time 0.029 seconds

The fabrication of TFTs for LCD using the 3mask process

  • Yoo, Soon-Sung;Cho, Heung-Lyul;Kwon, Oh-Nam;Nam, Seung-Hee;Chang, Yoon-Gyoung;Kim, Ki-Yong;Cha, Soo-Yeoul;Ahn, Byung-Chul;Chung, In-Jae
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.948-951
    • /
    • 2005
  • New technology that reduces photolithography process steps from 4 to 3 in fabrication of TFT LCD is introduced. The core technology for 3mask-TFTs is the lift-off process [1], by which the PAS and PXL layer are formed simultaneously. To evaluate the stability of this lift-off process, outgases from photo resist on a substrate during ITO deposition and the quality of ITO film were analyzed and the conventional photo resist stripper machine which operates lift-off process was examined to see its ability to reduce particle problems of the machine. Through the development of total process and design for TFTs using this 3mask technology, panels in TN and IPS modes which exhibit same performances of a display using a conventional process were achieved. In addition, this process was already verified in the mass production line and now some products are being produced by the 3mask technology.

  • PDF

A Study on Data Mining Application Problem in the TFT-LCD Industry

  • Lee, Hyun-Woo;Nam, Ho-Soo;Kang, Jung-Chul
    • Journal of the Korean Data and Information Science Society
    • /
    • v.16 no.4
    • /
    • pp.823-833
    • /
    • 2005
  • This paper deals the TFT-LCD process and quality, process control problems of the process. For improvement of the process quality and yield, we apply a data mining technique to the LCD industry. And some unique quality features of the LCD process are also described. We describe some preceding researches first and relate to the TFT-LCD process and the problems of data mining in the process. Also we tried to observe the problems which need to solve first and the features from description below hazard must be considered a quality mining in LCD industry.

  • PDF

2.22-inch qVGA a-Si TFT-LCD Using a 2.5 um Fine-Patterning Technology by Wet Etch Process

  • Lee, Jae-Bok;Park, Sun;Heo, Seong-Kweon;You, Chun-Ki;Min, Hoon-Kee;Kim, Chi-Woo
    • Journal of Information Display
    • /
    • v.7 no.3
    • /
    • pp.1-4
    • /
    • 2006
  • 2.22-inch qVGA $(240{\times}320)$ amorphous silicon thin film transistor liquid active matrix crystal display (a-Si TFT-AMLCD) panel has been successfully demonstrated employing a 2.5 um fine-patterning technology by a wet etch process. Higher resolution 2.22-inch qVGA LCD panel with an aperture ratio of 58% can be fabricated as the 2.5 um fine pattern formation technique is integrated with high thermal photo-resist (PR) development. In addition, a novel concept of unique a-Si TFT process architecture, which is advantageous in terms of reliability, was proposed in the fabrication of 2.22-inch qVGA LCD panel. Overall results show that the 2.5 um fine-patterning is a considerably significant technology to obtain higher aperture ratio for higher resolution a-Si TFT-LCD panel realization.

Fabrication of TFTs for LCD using 3-Mask Process

  • You, Soon-Sung;Cho, Heung-Lyul;Kwon, Oh-Nam;Nam, Seung-Hee;Chang, Yoon-Gyoung;Kim, Ki-Yong;Cha, Soo-Yeoul;Ahn, Byung-Chul;Chung, In-Jae
    • Journal of Information Display
    • /
    • v.6 no.3
    • /
    • pp.18-21
    • /
    • 2005
  • A new technology for reducing photolithography process from a four step to a three step process in the fabrication of TFT LCD is introduced. The core technology for 3-mask-TFT processes is the lift-off process [1], by which the PAS and PXL layers can be formed simultaneously. A different method of the lift-off process was developed in order to enhance the performance of efficiency with conventional positive and not negative PR which is the generally used in other lift-off process. In addition, the removal capacity of the ITO/PR in lift-off process was evaluated. The evaluation results showed that the new process can be run in conventional TFT production condition. In order to apply this new process in existing TFT process, several tests were conducted to ensure stability of the TFT process. It was found that the outgases from PR on the substrate in ITO sputtering chamber do not raise any problem, and the deposited ITO film beside the PR has conventional ITO qualities. Furthemore, the particles that were produced due to the ITO chips in PR strip bath could be reduced by the existing filtering system of stripper. With the development of total process and design of the structure for TFT using this technology, 3-mask-panels were achieved in TN and IPS modes, which showed the same display performances as those with the conventional 4mask process. The applicability and usefulness of the 3-mask process has already verified in the mass production line and in fact it currently being used for the production of some products.

2.22-inch qVGA ${\alpha}$-Si TFT-LCD Using a 2.5 um Fine-Patterning Technology by Wet Etch Process

  • Lee, J.B.;Park, S.;Heo, S.K.;You, C.K.;Min, H.K.;Kim, C.W.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1649-1652
    • /
    • 2006
  • 2.22-inch qVGA $(240{\times}320)$ amorphous silicon thin film transistor liquid active matrix crystal display (${\alpha}$- Si TFT-AMLCD) panel has been successfully demonstrated employing a 2.5 um fine-patterning technology by a wet etch process. Higher resolution 2.22-inch qVGA LCD panel with an aperture ratio of 58% can be fabricated because the 2.5 um fine pattern formation technique is combined with high thermal photo-resist (PR) development. In addition, a novel concept of unique ${\alpha}$-Si TFT process architecture, which is advantageous in terms of reliability, was proposed in the fabrication of 2.22-inch qVGA LCD panel. Overall results show that the 2.5 um finepatterning is a considerably significant technology to obtain higher aperture ratio for higher resolution ${\alpha}$-Si TFT-LCD panel realization.

  • PDF

Study on the n+ etching process in TFT-LCD Fabrication for Mo/Al/Mo Data Line

  • Choe, Hee-Hwan;Kim, Sang-Gab;Lim, Soon-Kwon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1111-1113
    • /
    • 2004
  • n+ etching process is investigated in the fabrication of TFF-LCD using low resistance data line of Mo/Al/Mo. Problems of consumption of upper Mo layer and contamination of channel area are resolved. Either of HCl or $Cl_2$ can be selected as a main etchant gas, and either of $SF_6$ or $CF_4$ can be selected as an additive. Plasma treatment after n+ etching process can reduce the off-current high problem.

  • PDF

The Improvement of Display Brightness in LCD-TV Panel through the Optimization of Organic Passivation Process

  • Lee, Yeong-Beom;Lee, Hi-Kuk;Kim, Shi-Yul;Kim, Sang-Soo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.235-238
    • /
    • 2008
  • We report the improvement in brightness through the optimization of the organic passivation process for fabricating a TFT substrate for LCD-TV panel. In conclusion, the optimization of organic passivation was accomplished with improving over $10\;cd/m^2$ in brightness than that of a conventional organic passivation process.

  • PDF

Foaming Process of Waste LCD Glass for the Recovery of Valuable Materials from Waste LCD Pannel (폐 LCD판넬의 유가성분 회수를 위한 폐 LCD유리의 발포공정)

  • Lee, Chul-Tae;Park, Tae-Moon;Kim, Jung-Min
    • Applied Chemistry for Engineering
    • /
    • v.23 no.2
    • /
    • pp.195-203
    • /
    • 2012
  • Recycling method of waste LCD glass is the essential process for developing the total recycling process of LCD pannel. Pulverizing of LCD glass, determination of proper carbonacious foaming agent, the properties of residue from the recovery of valuable materials through an acid leaching process and the feasibility for the foaming of the residue obtained from leaching for indium and tin recovery were investigated for the developing of recycling method of waste LCD glass as industrial feed materials, such as heat insulation materials, sound absorbing materials, carrier of water treatment. Waste LCD glass could be pulverized finely for foaming process. Natural graphite was proper agent for foaming of the residue and the foaming technology of LCD glass would be effective recycling alternatives.

Types & Characteristics of Chemical Substances used in the LCD Panel Manufacturing Process (LCD 제조공정에서 사용되는 화학물질의 종류 및 특성)

  • Park, Seung-Hyun;Park, Hae Dong;Ro, Jiwon
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.29 no.3
    • /
    • pp.310-321
    • /
    • 2019
  • Objectives: The purpose of this study was to investigate types and characteristics of chemical substances used in LCD(Liquid crystal display) panel manufacturing process. Methods: The LCD panel manufacturing process is divided into the fabrication(fab) process and module process. The use of chemical substances by process was investigated at four fab processes and two module processes at two domestic TFT-LCD(Thin film transistor-Liquid crystal display) panel manufacturing sites. Results: LCD panels are manufactured through various unit processes such as sputtering, chemical vapor deposition(CVD), etching, and photolithography, and a range of chemicals are used in each process. Metal target materials including copper, aluminum, and indium tin oxide are used in the sputtering process, and gaseous materials such as phosphine, silane, and chlorine are used in CVD and dry etching processes. Inorganic acids such as hydrofluoric acid, nitric acid and sulfuric acid are used in wet etching process, and photoresist and developer are used in photolithography process. Chemical substances for the alignment of liquid crystal, such as polyimides, liquid crystals, and sealants are used in a liquid crystal process. Adhesives and hardeners for adhesion of driver IC and printed circuit board(PCB) to the LCD panel are used in the module process. Conclusions: LCD panels are produced through dozens of unit processes using various types of chemical substances in clean room facilities. Hazardous substances such as organic solvents, reactive gases, irritants, and toxic substances are used in the manufacturing processes, but periodic workplace monitoring applies only to certain chemical substances by law. Therefore, efforts should be made to minimize worker exposure to chemical substances used in LCD panel manufacturing process.