• Title/Summary/Keyword: LCD Glass

Search Result 294, Processing Time 0.023 seconds

The durability of LCD glass substrate in dry etching

  • Yanase, Tomoki;Miwa, Shinkichi;Yamazaki, Hiroki
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.857-859
    • /
    • 2007
  • Durability of LCD glass, OA-10 and OA-21, to $SiCl_4$ and $SF_6$ gases was investigated. Reaction products are generated on the glass surface. The reaction products are reduced by changing the etching conditions. the durability of OA-10 and OA-21 to the dry etching gases is comparable.

  • PDF

Optimal Design of the 6th Generation LCD Glass Using the Taguchi Method (다구치 실험 계획법을 이용한 6세대 LCD Glass의 최적설계)

  • Cho, Woong;Song, Chun-Sam;Kim, Jong-Hyeong
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.2
    • /
    • pp.104-109
    • /
    • 2008
  • Nowadays, the researches for improving LCD manufacturing process and reducing cost are getting accelerated and additionally new types of process are widely developed. In this situation, APEM(Anti Photo Exposure Method) which does not need photo-lithography is realized as one of possible alternative of LCD process. APEM makes LCD pattern by stamping and it can reduce the process cost and process time because of its simplicity. But optical alignment between pattern glass and target glass is very critical fact to realize the precise patterns. So, the analysis of deflection of large size of glass is carried out and design of experiment method is applied for optimal design of jig.

Study of thin film transition liquid crystal display (TFT-LCD) optical waste glass applied in early-high-strength controlled low strength materials

  • Wang, Her-Yung;Chen, Jyun-Sheng
    • Computers and Concrete
    • /
    • v.5 no.5
    • /
    • pp.491-501
    • /
    • 2008
  • The present study verifies compressive strength, ultrasonic pulse velocity, electrical resistance,permeable ratio, and shrinkage from waste glass controlled low strength materials (WGCLSM) and early-high-strength WGCSLM specimens, by replacing the sand with waste glass percentages of 0%, 10%,20%, and 30%. This study reveals that increasing amounts of waste LCD glass incorporated into concrete increases WGCLSM fluidity and reduces the setting time, resulting in good working properties. By increasing the glass to sand replacement ratio, the compressive strength decreases to achieve low-strength effects. Furthermore, the electrical resistance also rises as a result of increasing the glass to sand replacement ratio. Early-high-strength WGCSLM aged 28 days has twice the electrical resistance compared to general WGCSLM. Early-high-strength WGCSLM aged 7 days has a higher ultrasonic pulse velocity similar to WGCSLM aged 28 days. The variation of length with age of different compositions is all within the tolerance range of 0.025%. This study demonstrates that the proper composition ratio of waste LCD glass to sand in early-high-strength WGCSLM can be determined by using different amounts of glass-sand. A mechanism for LCD optical waste glass usage can be established to achieve industrial waste minimization, resource recycling, and economic security.

A neural-based predictive model of the compressive strength of waste LCD glass concrete

  • Kao, Chih-Han;Wang, Chien-Chih;Wang, Her-Yung
    • Computers and Concrete
    • /
    • v.19 no.5
    • /
    • pp.457-465
    • /
    • 2017
  • The Taiwanese liquid crystal display (LCD) industry has traditionally produced a huge amount of waste glass that is placed in landfills. Waste glass recycling can reduce the material costs of concrete and promote sustainable environmental protection activities. Concrete is always utilized as structural material; thus, the concrete compressive strength with a variety of mixtures must be studied using predictive models to achieve more precise results. To create an efficient waste LCD glass concrete (WLGC) design proportion, the related studies utilized a multivariable regression analysis to develop a compressive strength waste LCD glass concrete equation. The mix design proportion for waste LCD glass and the compressive strength relationship is complex and nonlinear. This results in a prediction weakness for the multivariable regression model during the initial growing phase of the compressive strength of waste LCD glass concrete. Thus, the R ratio for the predictive multivariable regression model is 0.96. Neural networks (NN) have a superior ability to handle nonlinear relationships between multiple variables by incorporating supervised learning. This study developed a multivariable prediction model for the determination of waste LCD glass concrete compressive strength by analyzing a series of laboratory test results and utilizing a neural network algorithm that was obtained in a related prior study. The current study also trained the prediction model for the compressive strength of waste LCD glass by calculating the effects of several types of factor combinations, such as the different number of input variables and the relevant filter for input variables. These types of factor combinations have been adjusted to enhance the predictive ability based on the training mechanism of the NN and the characteristics of waste LCD glass concrete. The selection priority of the input variable strategy is that evaluating relevance is better than adding dimensions for the NN prediction of the compressive strength of WLGC. The prediction ability of the model is examined using test results from the same data pool. The R ratio was determined to be approximately 0.996. Using the appropriate input variables from neural networks, the model validation results indicated that the model prediction attains greater accuracy than the multivariable regression model during the initial growing phase of compressive strength. Therefore, the neural-based predictive model for compressive strength promotes the application of waste LCD glass concrete.

A Novel Pixel Structure for High Transmission TFT-LCD

  • Shin, Kyoung-Ju;Song, Se-Young;Lee, Il-Pyung;Kim, Chang-Hoon;Jang, Chang-Soon;Chai, Chong-Chul;Souk, Jun-Hyung
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.208-210
    • /
    • 2008
  • We have developed a LCD Panel that form storage capacitance for pixels between pixel electrode of bottom glass and common electrode of top glass. This method could make higher transmission and higher production yield than before by removing storage electrode line and capacitance on the bottom glass by simplifying bottom pixel structure.

  • PDF

Study on the Touch Screen Panel Based on the Light over Electro Phoretic Display

  • Choi, Uk-Chul;Jung, Ho-Young;Park, Cheol-Woo;Hong, Sung-Jin
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.706-709
    • /
    • 2007
  • Different from the LCD that have two glass substrates on the top and the bottom, EPD have an advantage that is using the bottom glass substrate and the top e-ink sheet. So, it is impossible to apply R or C type TSP that need bottom and top glass plane. We successfully implemented the TSP (Touch Screen Panel) based on the light over the EPD (Electro Phoretic Display).

  • PDF

Optimization to Minimize Deflection of a Large LCD Glass Plate with Multi-Simply Supports (다점 지지된 TFT-LCD 대형 유리기판의 처짐 최소 최적화)

  • Lee H.Y.;Lee Y.S.;Byun S.W.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.861-864
    • /
    • 2005
  • A LCD glass plate is supported by multi-pin and golf-tee type support. In the FEM analysis, the support condition is treated as simply supported boundary .condition. In this study, the optimization on the location of multi-simply support is conducted. The size optimization method of ANSYS 8.0 is used as the optimization tool to search for the optimal support location of LCD glass plate. In the manufacturing process, the support condition is a fatal factor of quality control of LCD production. From the results of optimization, deflection decreases 51% compared with the original model.

  • PDF

Study on the engineering and electricity properties of cement mortar added with waste LCD glass and piezoelectric powders

  • Chang, Shu-Chuan;Wang, Chien-Chih;Wang, Her-Yung
    • Computers and Concrete
    • /
    • v.21 no.3
    • /
    • pp.311-319
    • /
    • 2018
  • This study used a volumetric method for design. The control group used waste Liquid Crystal Displayplay (LCD) glass powder to replace cement (0%, 10%, 20%, 30%), and the PZT group used Pd-Zr-Ti piezoelectric (PZT) powder to replace 5% of the fine aggregate to make cement mortar. The engineering and the mechanical and electricity properties were tested; flow, compressive strength, ultrasonic pulse velocity (UPV), water absorption and resistivity (SSD and OD electricity at 50 V and 100 V) were determined; and the correlations were determined by linear regression. The compressive strength of the control group (29.5-31.8 MPa) was higher than that of the PZT group (25.1-29 MPa) by 2.8-4.4 MPa at the curing age of 28 days. A 20% waste LCD glass powder replacement (31.8 MPa) can fill up finer pores and accelerate hydration. The control group had a higher 50 V-SSD resistivity ($1870-3244{\Omega}.cm$), and the PZT group had a lower resistivity ($1419-3013{\Omega}.cm$), meaning that the resistivity increases with the replacement of waste LCD glass powder. This is because the waste LCD glass powder contains 62% $SiO_2$, which is a low dielectric material that is an insulator. Therefore, the resistivity increases with the $SiO_2$ content.

Durability Performance Evaluations on Resistance to Chloride Attack for Concrete Using LCD Waste Glass Powder (LCD 폐유리 미분말을 사용한 콘크리트의 염해내구성 평가)

  • Kim, Seong-Kyum;Lee, Kwang-Woon;Song, Jae-Ho;Jang, Il-Young
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.4
    • /
    • pp.289-296
    • /
    • 2018
  • In this study, we evaluated the feasibility and performance of LCD waste glass as a replacement for cement by using LCD waste glass powder which is generated from manufacturing process due to development of LCD industry. Experiments were carried out by replacing 10% and 20% cement of LCD waste glass with particle size of $12{\mu}m$ of LCD waste glass with OPC and particle size of $5{\mu}m$, respectively. Through experiments, basic properties, mechanical properties and durability of concrete were evaluated. Experimental results show that the compressive strength is high at 10% replacement ratio compared to 20%. The lower the particle size, the higher the strength. The durability test evaluated the chloride penetration performance through the chloride ion diffusion coefficient. The higher the substitution rate and the smaller the particle size, the lower the chloride ion diffusion coefficient and the better the OPC than the all substitution rate. As a result, LCD waste glass concrete with low granularity and proper replacement ratio is considered to be advantageous for durability under salt environment.

Real-time Static Deflection Compensation of an LCD Glass-Handling Robot (LCD 글래스 핸들링 로봇의 실시간 정적 처짐 보상)

  • Cho Phil-Joo;Kim Dong-Il;Kim Hyo-Gyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.7 s.250
    • /
    • pp.741-749
    • /
    • 2006
  • For last couple of decades, uses of TFI-LCDs have been expanded to many FPD(Flat Panel Display) applications including mobile displays, desktop monitors and TVs. Furthermore, there has been growing demand for increasingly larger LCD TVs. In order to meet this demand as well as to improve productivity, LCD manufactures have continued to install larger-generation display fabrication facilities which are capable of producing more panels and larger displays per mother glass(substrate). As the size of mother glass becomes larger, a robot required to handle the glass becomes bigger accordingly, and its end effectors(arms) are extended to match the glass size. With this configuration, a considerable static deflection occurs at the end of the robot arms. In order to stack maximum number of mother glasses on a given footprint, the static deflection should be compensated. This paper presents a novel static deflection compensation algorithm. This algorithm requires neither measurement instrument nor additional vertical axis on the robot. It is realized by robot controller software. The forward and inverse kinematics considering compensation always guarantees a unique solution, so the proposed algorithm can be applied to an arbitrary robot position. The algorithm reduced static deflection by 40% in stationary robot state experiment. It also improved vertical path accuracy up to 60% when the arm was running at its maximum speed. This algorithm has been commercialized and successfully applied to a seventh-generation LCD glass-handling robot.