• Title/Summary/Keyword: LCD Backlight

Search Result 371, Processing Time 0.015 seconds

An Experiment and Analysis for Standardize Measurement on CCFL (냉음극 형광램프의 표준화 계측을 위한 실험과 분석)

  • Jin, Dong-Jun;Jeong, Jong-Mun;Jeong, Hee-Suk;Kim, Jin-Shon;Lee, Min-Kyu;Kim, Jung-Hyun;Koo, Je-Huan;Gwon, Gi-Cheong;Kang, June-Gill;Choi, Eun-Ha;Cho, Guang-Sup
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.4
    • /
    • pp.331-340
    • /
    • 2008
  • A method of measuring the current and voltage is suggested in the circuit of cold cathode fluorescent lamps (CCFLs) which are driven at a high frequency of $50{\sim}100\;kHz$ and a high voltage of several kV. It is difficult to measure the current and voltage in the lamp circuit, because the impedance of the probe at high voltage side causes the leakage current and the variation of luminance. According to the analysis of equivalence circuit with the probe impedance and leakage current, the proper measuring method is to adjust the input DC voltage and to keep the specific luminance when the probe is installed at a high voltage circuit. The lamp current is detected with a current probe or a high frequency current meter at the ground side and the voltage is measured with a high voltage probe at the high voltage side of lamp. The lamp voltage($V_C$) is measured between the ballast capacitor and the lamp electrode, and the output voltage($V_I$) of inverter is measured between inverter output and ballast capacitor. As the phases of lamp voltage($V_C$) and current ($I_G$) are nearly the same values, the real power of lamp is the product of the lamp voltage($V_C$) by the lamp current($I_G$). The measured value of the phase difference between inverter output voltage($V_I$) and lamp current($I_G$) is appreciably deviated from the calculated value at $cos{\theta}=V_C/V_I$.