• Title/Summary/Keyword: LCC Method

Search Result 202, Processing Time 0.027 seconds

A Study on Algorithm of Life Cycle Cost for Improving Reliability in Product Design (제품설계 신뢰성 제고를 위한 LCC의 알고리즘 연구)

  • Kim Dong-Kwan;Jung Soo-Il
    • Journal of the Korea Safety Management & Science
    • /
    • v.7 no.5
    • /
    • pp.155-174
    • /
    • 2005
  • Parametric life-cycle cost(LCC) models have been integrated with traditional design tools, and used in prior work to demonstrate the rapid solution of holistic, analytical tradeoffs between detailed design variations. During early designs stages there may be competing concepts with dramatic differences. Additionally, detailed information is scarce, and decisions must be models. for a diverse range of concepts, and the lack of detailed information make the integration make the integration of traditional LCC models impractical. This paper explores an approximate method for providing preliminary life-cycle cost. Learning algorithms trained using the known characteristics of existing products be approximated quickly during conceptual design without the overhead of defining new models. Artificial neural networks are trained to generalize on product attributes and life cycle cost date from pre-existing LCC studies. The Product attribute data to quickly obtain and LCC for a new and then an application is provided. In additions, the statistical method, called regression analysis, is suggested to predict the LCC. Tests have shown it is possible to predict the life cycle cost, and the comparison results between a learning LCC model and a regression analysis is also shown

Economic Analysis of the Livestock Manure Treatment System Using Life-Cycle Cost Technique (LCC 기법을 통한 가축분뇨처리시설의 경제성 분석)

  • Kim, J.H.;Cho, S.H.;Kwag, J.H.;Choi, D.Y.;Jeong, K.H.;Chung, U.S.;Chung, M.S.;Park, S.K.
    • Journal of Animal Environmental Science
    • /
    • v.17 no.sup
    • /
    • pp.61-68
    • /
    • 2011
  • To assess the total cost with all stages of facilities, the feasibility of Life Cycle Cost (LCC) analysis was examined in this study to estimate the livestock manure treatment system and optimal decision making process. For the economic evaluation, the plant/equipment investment and annual operation cost of four Public Livestock Recycling Facilities, whose treatment capacity is 100 ton piggery manure per day, was compared. The initial cost was in the range of 2,699 million won to 3,202 million won, where T and E methods were highest and lowest, respectively. The annual operation cost was in the level of 378 million to 498 million won, which decreased in the following order : T method > J method > E method > B method. For the LCC analysis, 4.7% of interest rate, 3.13% of inflation rate, and 1.52% of net discount rate was considered by the data received from Bank of Korea and Statics Korea in the period of 2000 to 2009. Also, for the calculation of present value factor, the durable years of civil engineering & construction, machinery and electric instrument was 30 years, 10 years and 15 years, respectively. Based on these consideration, operation cost was in the range of 17,570 won/ton to 20,661 won/ton, and E method (17,570 won/ton) was economical and B method (20,661 won/ton) was non-economical. Though initial cost of T method was higher than that of B method, LCC analysis of T method was lower than that of T method due to the lower operation cost. Therefore, LCC analysis, which considers both initial cost and operation cost, is more reasonable evaluation method than either initial cost or annual operation cost. For the change of LCC analysis according to the uncertainty, the sensitivity analysis was carried out using fluctuation magnitude of discount rate in the period of 2000 to 2009. As a result, LCC analysis evaluated by discount rate was stable for the uncertain factors since the cost leadership did not change even though the sensitivity analysis varied. In summary, the economic evaluation using LCC analysis could be an efficient reference to choose the suitable livestock manure treatment plants. Furthermore, standardization of statement calculation for the actual cost analysis should be conducted and more detailed study is necessary to validate this summary. Therefore, the application of comprehensive technology evaluation, which considers LCC analysis, should contribute in obtaining objectivity and enhancing reliability for the 'Evaluation of Livestock Manure Treatment System and its Technology'.

Design Method of High Efficiency Capacitor Charger Based on LCC Resonant Converter (LCC 공진형 컨버터 기반의 고효율 커패시터 충전기 설계기법)

  • Jeong, Song-Chan;Song, Seung-Ho;Choi, Min-Kyu;Ryoo, Hong-Je
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.4
    • /
    • pp.325-331
    • /
    • 2022
  • This study proposes a design method that minimizes a conduction loss of LCC resonant converter under rated condition. Through a simplified analysis of the waveform of the resonant current, the power transfer section and RMS value of the resonant current was analyzed mathematically and graphically. Based on this analysis, the design method that minimizes the RMS value of the resonant current is proposed. To demonstrate this method, this study designed a 7.5 kW (100 V, 75 A) capacitor charger based on LCC resonant converter and the design parameters were chosen according to the process of the design method. Then, the capacitor charger was implemented. An experiment was conducted to measure efficiency while satisfying design specifications under rated conditions. This design method was verified to be effective by achieving 97.7% maximum efficiency and design specifications under rated conditions.

A Study on the reliability method development for the LCC analysis (LCC분석에 있어서 신뢰성기법 활용에 관한 연구)

  • Lee, J.B.;Cho, S.H.;Min, B.C.;Hong, D.Y.;Lee, W.J.
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2011.06a
    • /
    • pp.319-328
    • /
    • 2011
  • The failure of LCC analysis is recognized as a serious risk for companies in fast-paced business environment. LCC analysis has been mentioned and analyzed only in accounting perspectives, but recently engineering perspectives of LCC analysis based on the execution of appropriate procedures become more important than the accounting perspectives. Especially, the practical use of reliability engineering related methodologies is recognized as a key factor for the LCC analysis. For the practical use of reliability methods, LCC analysis for unexposed problems is a key issue, and utilizing FMEA and FTA techniques is needed to solve the unexposed problems. Reliability, maintainability, availability, and safety should be evaluated by the LCC analysis with the reliability methods, so we study methodologies for the LCC analysis. Present Worth can be calculated by multiplication of Annual Equivalent Cost and PWAF. Reliability engineering related methods are needed for the process of dividing Present Worth into PWAF, and the practical use of reliability methods can improve accuracy of LCC analysis.

  • PDF

Economic Analysis of Insulation Wall Panel System using LCC Method (LCC기법을 활용한 단열외벽패널시스템의 경제성분석)

  • Kim, Min-Woo;Jeon, Kyu-Nam;Lee, Gun-Cheol;Cho, Byoung-Young;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.05a
    • /
    • pp.153-155
    • /
    • 2011
  • In this study, an insulation panel system that has the most excellent economic feasibility in a long term LCC viewpoint in some analysis, which determine a proper insulation panel construction method for the out wall of structures, is analyzed. As a result, in the case of a deterministic LCC analysis, the initial investment cost represents about 80,000Won/㎡ for extrusion ceramic panels. Also, although the costs of maintenance, disassembling, and disposal show no large differences compared with other panel systems, metal panels indicate a bit higher than other panel systems about 1.5 times. In the probability density function that analyzes the variation of the probabilistic cost between panel systems and its economic feasibility, metal panels show the highest cost distribution and extrusion and stone panels represent low cost distributions. In the cumulative function distribution that composites probability density functions, the extrusion ceramic panel represents the most excellent economic feasibility and reliability and that is also the most superior subject among the subjects used in this study.

  • PDF

Life Cycle Cost Analysis about Renewable Energy Facilities Combination of Photovoltaic system, Solar thermal system and Geothermal system (태양광발전, 태양열 급탕, 지열시스템의 신재생에너지설비 조합에 관한 LCC 분석)

  • Chun, Sang Hyun;Ahn, Jang-Won;Kim, Wonwoo;Cho, Seung-Yun
    • KIEAE Journal
    • /
    • v.12 no.1
    • /
    • pp.105-112
    • /
    • 2012
  • When a building is planned and designed, the design should be able to minimize the cost during the whole life cycle of the building. This study has begun to analyze LCC about the alternative design which is applicable to renewable energy facility construction. It is reviewed domestic and foreign papers about the trend of LCC technology and it is determined the analytical method to analyze the LCC of renewable energy. Regarding the review of alternatives, it is chosen the three alternatives which are able to designed combing the renewable energy facilities and it is performed the LCC analysis about each alternative. Alternative 1 is Photovoltaic + Solar Thermal + Photovoltaic /Wind Power, Alternative 2 is Geothermal + Photovoltaic, and Alternative 3 is Photovoltaic + Solar Thermal. The LCC analysis is present value method, its analytical period is 40 years and it is applied 3.2% of real discount rate. As a result, it is proved that Alternative 1 and Alternative 3 are not able to collectible the early investment cost during the analytical period and Alternative 2 is analyzed that its pay-back period of early investment cost is about 31 years. As the final outcome of this study on case analysis, it is more advantageous to use the combination of Geothermal and Photovoltaic energy than to use the other combination in LCC aspect.

Problems and Solutions of LCC Analysis in BTL Project for Education Facilities (교육시설 BTL 사업에서 LCC 분석의 문제점도출 및 해결방안)

  • Kim, Chung-Yung;Hong, Tae-Hoon;Hyun, Chang-Taek;Lee, Hyun-Jong
    • Korean Journal of Construction Engineering and Management
    • /
    • v.9 no.4
    • /
    • pp.182-192
    • /
    • 2008
  • The purpose of this research is to identify problems and solutions of domestic Life Cycle Cost analysis in BTL(Build-Transfer-Lease), a PFI(Private Finance Initiatives) project. It is expected BTL would be quite effective delivery method for public construction introducing the private's major capital investments and technologies, and obviously LCC analysis is becoming more important factor for success of BTL projects. Nevertheless, there are still some complicated issues in LCC analysis, a technique for selecting the optimal VE(Value Engineering) proposals and estimating OM&R (Operation, Maintenance, & Repair) cost of the buildings, and has been applied limitedly. This research mainly focuses on educational facility, as most frequently delivered by BTL currently, especially with two levels (Alternative LCC and Building LCC) , which is occupied main potion in BTL project. In addition, it identifies four main problems and suggests their solutions through case studies focusing six major factors (WBS, Repair Information, Life Cycle, Time value of money, Repair Information Database, LCC Model) from three projects. Advanced development of this research requires closer partnership between the private / public sectors, and their long term strategies.

Establishment of BIM-LCC Analysis System for Selecting Optimal Design Alternative using Open KBIMS Libraries (개방형 KBIMS 라이브러리를 활용한 최적설계대안 선정을 위한 BIM-LCC분석 시스템 구축)

  • Lee, Chun-Kyong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.12
    • /
    • pp.153-161
    • /
    • 2020
  • Building information modeling (BIM) is a smart construction technique that is recognized as essential for current construction facility projects. The Public Procurement Service (a construction project-ordering agency) announced a plan to introduce BIM and has required changing the operation of projects by using BIM design information. LCC analysis is essential for items, quantity, and cost information of the construction, and it is expected that efficient work will be achieved by using BIM design information. In this study, a BIM-LCC analysis system was established for selecting optimal design alternatives by actively using open KBIMS libraries. The BIM-LCC analysis system consists of a single alternative and an optimal alternative LCC analysis, but it has a limitation in that only the architecture and machine libraries have been applied. However, by applying BIM, practical use and work efficiency can be expected. In order to use the method as an LCC analysis support tool with BIM design information in the future, it will be necessary to collect user opinions and improve the UI.

Optimal Repair Method Selection through Neutralization Prediction and LCC Evaluation of a Concrete Structure (콘크리트 구조물의 중성화 및 LCC예측을 통한 최적보수공법 선정)

  • Kang In Seok;Lee Han Seung;Jeong Hae Moon;An Tae Song
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.511-514
    • /
    • 2005
  • In this study, LCC(Life Cycle Cost) evaluation technique is used for the purpose of accumulation of basic data required for such integrative system construction. We predicted the degradation time of concrete and repair material by neutralization through FEM analysis, and utilized the result for LCC evaluation It turned out that the repair method of construction in the most economical initial measure against degradation and a durable period can be chosen through the LCC evaluation in consideration of the degradation prediction using FEM analysis and the initial construction expense in a durable period and repair expense, and the number of repair times.

  • PDF

A Study on Sensitivity Analysis of Life-Cycle Cost of Concrete Bridges (콘크리트 교량의 생애주기비용 민감도 분석)

  • Koo, Bon-Min;Byun, Kuen-Joo;Song, Ha-Won
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.773-776
    • /
    • 2004
  • The so-called Life Cycle Cost (LCC) analysis on reinforced concrete bridge can provide useful information for initial design and maintenance plan of the RC bridge. This paper proposes an LCC prediction equation and a sensitivity analysis method for RC bridges. An LCC equation for the RC bridge which includes initial investment cost, maintenance cost, and demolition cost was derived and verified from the data for design and construction of an RC slab bridge. In order to solve uncertainty problem on actual discount rate and material characteristics in the analysis of LCC of concrete bridges, a sensitivity analysis method on the LCC using the Monte Carlo simulation technique was suggested.

  • PDF