• Title/Summary/Keyword: LCA분석

Search Result 204, Processing Time 0.018 seconds

Anlysis of the Environmental Load Impact Factors for IPC Girder Bridge Using Principal Component Anlysis (주성분 분석을 활용한 IPC 거더교의 환경부하량 영향요인 분석)

  • Kim, Joon-Soo;Jeon, Jin-Gu;Kim, Byung-Soo
    • Korean Journal of Construction Engineering and Management
    • /
    • v.19 no.6
    • /
    • pp.46-54
    • /
    • 2018
  • In the 21st century, the Earth has continued its efforts to reduce carbon emissions to overcome the crisis caused by climate change. The construction industry, which is a representative industry that produces large amounts of the environmental load during construction, should actively reduce the amount of the environmental load. From the planning stage of the construction facility, it is necessary to consider the environmental load such as route selection and structure type selection to reduce the environmental load. However, the environmental load can be estimated based on the input resource amount. However, in the planning stage, it is difficult to accurately calculate the environmental load due to lack of information on the construction amount. The purpose of this study is to select the environmental load factors for IPC girder bridges to be used in the environmental load estimation model in the planning stage. Specific information related to the environmental load was selected from a list of information available in the planning stage, reflecting the Life Cycle Assessment(LCA), correlation, principal components analysis and expert opinion. The list of selected planning stage information is 10 such as span length and bridge extension, and it is expected to be used as a basic data for the future development of environmental load estimation model.

An Eco-efficiency Analysis of Nd Permanent Magnet Recycling (Nd 영구자석(永久磁石) 재활용(再活用)의 Eco-efficiency 분석(分析))

  • Kim, Byung Ju;Kim, Hyoungseok;Yoon, Ho Sung;Cho, Bong Gyoo;Hur, Tak
    • Resources Recycling
    • /
    • v.22 no.4
    • /
    • pp.55-61
    • /
    • 2013
  • In this study, eco efficiency analysis is performed to analyze Neodymium (Nd) containing permanent magnet recycling process. Life cycle assessment (LCA) and life cycle costing (LCC) are used to apply eco efficiency analysis. In the environmental aspects, global warming potential (GWP) of 1kg permanent magnet is 1.25E + 00 kg $CO_2$ eq. and abiotic resource depletion potential (ADP) is 1.10E - 02 Sb eq. This recycling process costs about 2130 KWR. Environmental efficiency of GWP is at 6.43 and ADP is at 5.32 when compared with vigin metal. Economic efficiency is at 6.74. This study confirms that Nd containing permanent magnet recycling process is sustainable system because of environmental and economical improvement.

Analysis of the Effect in Mathematics Teachers Beliefs on their Students Beliefs by Latent Class Regression Model (잠재집단회귀모델(LCRM)을 통한 학생의 수학적 신념에 대한 교사의 수학적 신념 영향분석)

  • Kang, Sung Kwon;Hong, Jin-Kon
    • Communications of Mathematical Education
    • /
    • v.34 no.4
    • /
    • pp.485-506
    • /
    • 2020
  • The purpose of this study is to analyze of the effect in Mathematics Teachers beliefs on their students beliefs by Latent Class Regression Model (LCRM). For this analysis, the study used the findings and surveys of Kang, Hong (2020) who developed a belief profile by analyzing the mathematical beliefs of 60 high school teachers and 1,850 second-year high school students learning from them through the Latent Class Analysis (LCA). As a result It was observed that 'Nature of Mathematics', 'Mathematic Teaching' and 'Mathematical Ability' of mathematics teachers beliefs influence the mathematical beliefs of students. The teacher's belief of 'Nature of Mathematics' statistically significant effects on students' beliefs in 'School Mathematics', 'Problem Solving', 'Mathematics Learning'. The teacher's belief of 'Teaching Mathematics', 'Mathematical Ability' statistically significant effects on students' beliefs in 'School Mathematics', 'Problem Solving', 'Self-Concept'. The results of this study can give a preview of the phenomenon in which teacher's mathematical beliefs are reproduced into student's mathematical beliefs. In addition, the results of observation of this study can be used to the contents that can achieve the purpose of reorientation for mathematics teachers.

Environmental Impact Assessment on Dismantling·Crushing·Sorting Process for Recycling of Used Small Household Appliances (폐소형가전 재활용을 위한 해체·파쇄·선별 공정의 환경영향 분석)

  • Park, Eun Kyu;Park, Ki Hak;Choi, Woo Zin;Kim, Soo Kyung
    • Resources Recycling
    • /
    • v.25 no.2
    • /
    • pp.17-24
    • /
    • 2016
  • This study aims at evaluating environmental impacts on recycling process of used small household appliances. The recycling process mainly consists of manual dismantling, crushing and various sorting processes to effectively recover valuable resources and to minimize environmental impact. In this study, life-cycle assessment (LCA) methodology is applied to analyze major environmental parameters such as GWP, ADP, POCP, EP, etc. One of the major impact categories on the weight basis in the recycling process is global warming (GWP) 57.1%, next to ADP 35.4% and POCP 4.8%, respectively. As a result of environmental impact on recovery of valuable resources/ton, the GWP of plastics for ABS is highest (33.7%) compared to ferrous metals (9.4%). The effects of environmental and economical benefit are also analyzed to compare with the amount of virgin materials to be recycled by recycled materials. In addition, recycled materials are also more economical in comparison to virgin materials due to the environmental avoiding effect by recycling. In conclusion, the key environmental issues related to the recycling of e-wastes are analyzed and therefore, the effective recycling process will contribute to mitigate global warming potential in the near future.

Evaluation of Life Cycle Energy Consumption and CO2 Emission of Elementary School of Buildings (초등학교 건축물의 생애주기 에너지사용량 및 이산화탄소 배출량 평가)

  • Ji, Changyoon;Hong, Taehoon;Jeong, Jaewook
    • Korean Journal of Construction Engineering and Management
    • /
    • v.17 no.3
    • /
    • pp.52-60
    • /
    • 2016
  • This study investigates and analyzes the total amount of energy consumption and $CO_2$ emission during the material manufacturing, transportation, construction, operation, and disposal phases of eight elementary school buildings in South Korea. Toward this ends, the hybrid LCA model is proposed. The life cycle energy consumption and $CO_2$ emission of eight case buildings are assessed using the hybrid LCA model with an assumption that the operation period is 40 years. As a result, the embodied(sum of the energy consumption in the material manufacturing, transportation and construction phases), operational and disposal energy were 2,279, 11,182, $228Mcal/m^2$, respectively, on average. The average embodied, operational, and disposal $CO_2$ emission were 604, 2,708, 60 kg-$CO_2/m^2$, respectively, on average. This result indicates that about 17% of life cycle energy (or $CO_2$ emission) is consumed in the material manufacturing, transportation and construction phases. Thus, it is necessary to consider the embodied energy and $CO_2$ emission to reduce the life cycle energy and $CO_2$ emission of school buildings. In addition, while the insulation standard of building have been provided based on the climate zone, energy consumption in operation phase still varied depending on the regions in this study. Thus, the insulation standard of building needs to be improved through considering the climate of regions in detail.

Coronary artery diameter of normal children aged 3 months to 6 years (생후 3개월에서 7세 미만 정상 소아에서의 관상동맥 직경)

  • Yu, Jeong Jin;Cho, Suk Kyung;Park, Yong-Mean;Lee, Ran;Chung, Sochung;Bae, Sun Hwan
    • Clinical and Experimental Pediatrics
    • /
    • v.51 no.6
    • /
    • pp.629-633
    • /
    • 2008
  • Purpose : This study was designed to investigate normal domestic values for the diameter of the left main coronary artery (LCA), the left anterior descending coronary artery (LAD) and the right coronary artery (RCA). These data are necessary to define dilatation of coronary arteries in Kawasaki disease cases. Methods : Study subjects were 43 normal healthy children whose ages ranged from 3 months to 6 years. They children visited Konkuk University hospital for echocardiograph examination between March 2005 and November 2007. Measurements of coronary arterial diameters at each branch were done by off-line analyses of recorded images. Simple regression analysis of each the measurements were performed using the body size (body surface area, etc.) as the independent variable. Results : Body surface area was significantly related to the diameters of LCA ($r^2=0.20$, P=0.0038), of LAD ($r^2=0.41$, P<0.0001), and of RCA ($r^2=0.30$, P=0.0002). In the regression model, the estimates of the y-intercept were 1.703, 1.058, and 1.007; the estimates of the regression coefficient were 0.971, 1.175, and 1.177; and the estimates of the standard deviation were 0.315, 0.221, and 0.282 with respect to the three coronary arteries. Conclusion : A the linear regression model of the diameters of three coronary arteries adjusted for body surface area was produced. With these results, the Z-score calculation of the diameter of three coronary arteries, based on normal domestic data, will be possible.

Life Cycle Assessment of Part Reuse/Recycling in the End-of-Life Stage of Personal Computers (부품 재사용 여부에 따른 폐컴퓨터에 대한 전과정평가(LCA))

  • Lim, Hyeong-Soon;Yang, Yun-Hee;Song, Jun-Il;Lee, Kun-Mo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.5
    • /
    • pp.494-500
    • /
    • 2006
  • Life Cycle Assessment(LCA) is an environmental assessment tool for evaluating environmental burdens associated with products, processes and activities from the raw material acquisition stage to the end-of-life stage. End-of-life stage as well as other processes requires a reliant database in order to increase the confidence in the LCA results. In this study, the flow of Personal Computer(as PC) in the end-of-life stage was examined and the database of two scenarios has been established, i.e. one is part reuse and the other is no part reuse, in the end-of-life phase of PC. Also, key environmental issues were identified by carrying out LCA on a PC in the end-of-life phase for eight environmental impact categories. The 'ozone layer depletion' contributes the highest environmental impact due to generation of $Cl_2$ gas during the incineration of waste plastics. In addition, the scenario 1(part reuse) is more environmentally sound than the scenario 2(no part reuse) when comparing two scenarios.

On Improving Efficiency of Environmental R&D Management System : A Survey Study (환경관련 R&D사업 운영체계의 문제점과 개선방안 -설문조사를 중심으로-)

  • Kim, Hong-Kyun;Lim, Jong-Soo
    • Environmental and Resource Economics Review
    • /
    • v.13 no.3
    • /
    • pp.469-497
    • /
    • 2004
  • Environmental R&D management system has been analyzed with LCA method. Based on the analysis, we found the following four elements were essential for improving effciency of environmental R&D management system: establishment of an information clearinghouse that collects and distributes information on the status of the domestically owned environmental technology, Periodic survey of the environmental technology demand to give guidance in selecting the environmental R&D project that are to be subsidized, dissemination of information on the technology transfer and commercialization assistance program, and increased funding as well as the expansion of project categories eligible for R&D subsidy.

  • PDF

A Study on the Analysis of Carbon Emissions by Transportation Distance of Building Materials (건축자재 운송거리에 따른 탄소배출량 분석에 관한 연구)

  • Kim, Hyeon-Suk;Tae, Sung-Ho;Lim, Hyo-Jin;Jang, Hyeong-Jae;Lee, Chung-Won
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.125-126
    • /
    • 2022
  • As environmental problems around the world become serious, Korea has also raised the greenhouse gas reduction in the building sector to 32.8% compared to 2018, and efforts to reduce carbon in buildings are expanding. Recently, research is being actively conducted to reduce carbon in the long term by expanding the scope of greenhouse gas indirect emissions (Scope3), and even within the domestic Green Standard for Energy and Environmental Design(G-SEED) by quantitatively evaluating the environmental impact of buildings during the entire life cycle. However, it is difficult to accurately evaluate the carbon emission of the transportation process by assuming the material transport distance in the evaluation of the Life Cycle Assessment(LCA). Therefore, in this study, the main building materials of the building were selected through case evaluation and the carbon emission of the material transport process was derived based on the actual transport distance, and this was compared and analyzed with the theoretical LCA results.

  • PDF

An Analysis of the Characteristics of Standard Work and Design Information on Estimating Environmental Loads of PSC Beam Bridge in the Design Phase (PSC Beam 교량의 설계단계 환경부하량 산정을 위한 공종 및 설계정보 특성 분석)

  • Yun, Won Gun;Ha, Ji Kwang;Kim, Kyong Ju
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.4
    • /
    • pp.705-716
    • /
    • 2017
  • As many environmental pollution problems have arisen, various studies related to the environmental evaluation have been carried out in the construction industry. However, there is no methodology for estimating the environmental load quickly for design alternatives of civil facilities in the design phase. This study aim to establish criteria of works information and designed parts which can efficiently estimate environmental loads of PSC beam bridge based on standard quantity at the early design phase. For this purpose, a detailed environmental loads database was constructed by performing Life Cycle Assessment (LCA) based on detailed design data of 25 bridges. In addition, major work with high impact on environmental load were selected, and the analysis of characteristics of environmental load according to the required materials and 8 impact categories were conducted. As a result, the superstructure accounted for 42.91%. In the superstructure, remicon of the material base and PSC beam work occupied 53.13% and 31.25%. In the substructure, remicon, rebar, and cement, which are material base, accounted for more than 93%. It is expected that this major work and material information for each part of bridge can be utilized in the construction of the model, which can estimate the approximate environmental load, reflecting the characteristics of the structure in the design phase.