• Title/Summary/Keyword: LC-NMR-MS

Search Result 93, Processing Time 0.026 seconds

Biotransformation of a Fungicide Ethaboxam by Soil Fungus Cunninghamella elegans

  • PARK, MI-KYUNG;KWANG-HYEON LIU;YOONGHO LIM;YOUN-HYUNG LEE;HOR-GIL HUR;JEONG-HAN KIM
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.1
    • /
    • pp.43-49
    • /
    • 2003
  • Metabolism of a new fungicide ethaboxam by soil fungi was studied. Among the fungi tested, Cunninghamelia elegans produced metabolites from ethaboxam, which were not found in the control experiments. M5, a major metabolite from ethaboxam was firmly identified as N-deethylated ethaboxam by LC/MS/MS and NMR. N-Deethylated ethaboxam has been found as a single metabolite in in vitro metabolism with rat liver microsomes. Ml was proved to be 4-ethyl-2-(ethylamino)-1,3-thiazole-5-carboxamide (ETC) by comparing with the authentic compound. In addition, M2, M3, and M4, and M6 were tentatively Identified by LC/MS/MS as hydroxylated and methoxylated ethaboxams, respectively. Production of the major metabolite, N-deethylated ethaboxam, by the fungus suggested that C. elegans would be an efficient eukaryotic microbial candidate for evaluating xenobiotic-driven mammalian risk assessment.

Elucidation of new anti-impotency analogue in food (식품 중 발기부전치료제 유사물질 규명)

  • Suh, Junghyuck;Choi, Jangduck;Park, Kunsang;Hu, Soojung;Yoon, Taehyung;Kim, Eunju;Han, Seungwoo;Kim, Sohee;Lee, Kwangho;Kwan, Sungwon;Kim, Deukjoon
    • Analytical Science and Technology
    • /
    • v.22 no.4
    • /
    • pp.345-353
    • /
    • 2009
  • The new anti-impotency analogue was identified in food source. Detection of this analogue was accomplished through screening of food samples by liquid chromatography/photodiode array detector. The spectrum pattern of analogue compound was similar to that observed for hongdenafil which was analogue of sildenafil. This new compound was isolated and purified using the liquid-liquid extraction, thin layer chromatography, column chromatography and preparative HPLC. And then those structure were identified using analytical instruments such as HPLC/PDA, LC/MS/MS and NMR. The compound was given a name to oxohongdenafil which was replaced with acetyl oxoethylpiperazinyl residue instead of sulfonyl piperazine group of sildenafil. The regulation for the abovementioned analogue, oxohongdenafil, was established by Standard of Korean food code.

Screening of Effective Components from Kale to Inhibit N - Nitrosodimethylamine Formation (케일로부터 N-Nitrosamine 생성을 억제시키는 유효성분의 검색)

  • 정미자;이수정;최선영;성낙주
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.32 no.2
    • /
    • pp.223-229
    • /
    • 2003
  • An amine rich diet with nitrate was incubated in simulated saliva, gastric juice, kale juice, and its ascorbate and methanol soluble portions (5, 10, 15 and 30 mL) for 1 hr at 37$^{\circ}C$ and N-nitrosodimethylamine (NDMA) was detected in the digestion sample, Kale juice and its ascorbate and methanol soluble portions at 30mL inhibited NDMA formation by 60.1$\pm$4.4%, 49.3$\pm$1.2% and 50.1$\pm$2.0%, respectively. The methanol soluble portion was further fractionated by preparative-LC (prep-LC). Nitrite-scavenging effects of 7 methanol soluble portion (Kl, K2, K3, K4, K5, K6 and K7) in kale juice were 2.0 ~56.2%. Among seven fractions, K3, K4, K5 and K7 exhibited weakly on nitrite scavenging effect. Fraction Kl and K2 inhibited NDMA formation by 71.0 and 65.5%, respectively. Fraction Kl and K2 was further separated by prep-LC into 6 subfractions (Kla, Klb, Klc, K2a, K2b and 2nc). Those subfractions inhibited NDMA formation by 40.9 ~80.4%. The K2a subfraction was screened by MS, $^1$H-NMR, $^{13}$ C-NMR and DEPT spectrum.

ACAT (Acyl-CoA:cholesterol Acyltransferase) Inhibitory Effect and Quantification of Pyranocurmarin in Different Parts of Angelica gigas Nakai (참당귀(Angelica gigas)에서 분리한 pyranocurmarin 성분의 ACAT 저해활성 및 참당귀 부위별 pyranocurmarin 성분의 함량 분석)

  • Kim, Geum-Soog;Park, Chun-Geun;Jeong, Tae-Sook;Cha, Seon-Woo;Baek, Nam-In;Song, Kyung-Sik
    • Journal of Applied Biological Chemistry
    • /
    • v.52 no.4
    • /
    • pp.187-194
    • /
    • 2009
  • Two pyranocoumarin constituents have been isolated from Angelica gigas and were identified as decursinol angelate (1) and decursin (2) by means of NMR analysis, respectively. Human acyl-CoA:cholesterol acyltransferase (hACAT) inhibitory activity of decursinol angelate (1) and decursin (2) was evaluated. Decursin (2) showed significantly inhibitory activity against hACAT1 and hACAT2 with $IC_{50}$ value of 137 and $168\;{\mu}M$, respectively, whereas decursinol angelate (1) exhibited weak ACAT inhibitory activity. These results suggested that decusin from A. gigas might be effective for the prevention and the treatment of hypercholesterolemia or atherosclerosis by inhibitory effect on hACAT. The contents of decursinol angelate (1) and decursin (2) were analyzed in various parts of A. gigas including flower, seed, leaf and root using LC/MS/MS (ESI, positive ion mode, MRM mode). The content of decursinol angelate was increased in order of flower, seed, leaf, and root and decursin content was increased in order of flower, seed, leaf, and root. It was expected that unused parts including leaf and flower of A. gigas might be useful as new functional sources by their high contents of decursin and decursinol angelate.

Production of Mono-Hydroxylated Derivatives of Terpinen-4-ol by Bacterial CYP102A1 Enzymes

  • Jeong-Hoon Kim;Chan Mi Park;Hae Chan Jeong;Gyeong Han Jeong;Gun Su Cha;Sungbeom Lee;Chul-Ho Yun
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.3
    • /
    • pp.725-734
    • /
    • 2024
  • CYP102A1 from Bacillus megaterium is an important enzyme in biotechnology, because engineered CYP102A1 enzymes can react with diverse substrates and produce human cytochrome P450-like metabolites. Therefore, CYP102A1 can be applied to drug metabolite production. Terpinen-4-ol is a cyclic monoterpene and the primary component of essential tea tree oil. Terpinen-4-ol was known for therapeutic effects, including antibacterial, antifungal, antiviral, and anti-inflammatory. Because terpenes are natural compounds, examining novel terpenes and investigating the therapeutic effects of terpenes represent responses to social demands for eco-friendly compounds. In this study, we investigated the catalytic activity of engineered CYP102A1 on terpinen-4-ol. Among CYP102A1 mutants tested here, the R47L/F81I/F87V/E143G/L188Q/N213S/E267V mutant showed the highest activity to terpinen-4-ol. Two major metabolites of terpinen-4-ol were generated by engineered CYP102A1. Characterization of major metabolites was confirmed by liquid chromatography-mass spectrometry (LC-MS), gas chromatography-MS, and nuclear magnetic resonance spectroscopy (NMR). Based on the LC-MS results, the difference in mass-to-charge ratio of an ion (m/z) between terpinen-4-ol and its major metabolites was 16. One major metabolite was defined as 1,4-dihydroxyp-menth-2-ene by NMR. Given these results, we speculate that another major metabolite is also a mono-hydroxylated product. Taken together, we suggest that CYP102A1 can be applied to make novel terpene derivatives.

Isolation of the Efficacy Constituent for Neuronal Regeneration from Cibotium barometz (구척으로부터 신경재생 효능 성분 분리)

  • 김상태;한용남;손연경;장형석;김수장;신준식
    • YAKHAK HOEJI
    • /
    • v.46 no.6
    • /
    • pp.398-404
    • /
    • 2002
  • A phytochemical study on the root of Cibotium barometz J. Smith led to the isolation of onitin (I), daucosterol (II) and a new compound (III). Compound III was characterized as 2-Ο-(9Z,12Z-octadecadienoyl)-3-Ο-[$\alpha$-D-galactopyranosyl-(1"-6")-Ο-$\beta$-D-galactopyranosyl] glycerol, named shinbarometin by $^1$H-, $^{13}$ C-NMR and LC/MS data. Compound III exerted an induced neuronal regeneration on nogo-A induced neuroblastoma cells.

Absorption, Distribution, Metabolism, and Excretion of CKD-732, a Novel Antiangiogenic Fumagillin Derivative, in Rats, Mice, and Dogs

  • Lee, Ho-Sup;Park, Won-Kyu;Son, Hoe-Joo;Lee, Sung-Sook;Kim, Joon-Kyum;Ahn, Soon-Kil;Hong, Chung-Il;Min, Hye-Ki;Kim, Myung-Soo;Myung, Seung-Woon
    • Archives of Pharmacal Research
    • /
    • v.27 no.2
    • /
    • pp.265-272
    • /
    • 2004
  • The pharmacokinetics of CKD-732 (6-0-4-[dimethyl-aminoethoxy)cinnamoyl]-fumagillolㆍhemioxalate) was investigated in male SD rats and beagle dogs after bolus intravenous administration. The parent compound and metabolites obtained from in vitro and in vivo samples were determined by LC/MS. The main metabolite was isolated and identified as an N-oxide form of CKD-732 by NMR and LC/MS/MS. CKD-732 was metabolized into either M11 or others by rapid hydroxylation, demethylation, and hydrolysis. The blood level following the intravenous route declined in first-order kinetics with $T_{1}$2/$\beta$ values of 0.72-0.78 h for CKD-732 and 0.92-1.09 h for M11 in rats at a dose of 7.5-30 mg/kg. In dogs, $T_{1}$2/$\beta$ values of CKD-732 and M11 were 1.54 and 1.79 h, respectively. Moreover, AUC values increased dose dependently for CKD-732 and M11 in rats and dogs. The CLtot and Vdss did not change significantly with increasing dose, indicating linear pharmacokinetic patterns. The excretion patterns through the urine, bile, and feces were also examined in the animals. The total amount excreted in urine, bile, and feces was 2.13% for CKD-732 and 1.29% for M11 in rats, and 1.58% for CKD-732 and 2.28% for M11 in dogs.

Synthesis and Characterization of 2, 6-Di-(4'-Methyl Phenyl) Pyrylium Fluoroborate and Perchlorate in Single Step Salts Using 4'-Methyl Acetophenone

  • Wie, Jin-Hyeong;Hong, Young-Min;Kim, Hyun-Ook;Kim, Kyung-Hoon;Cho, Sung-Il
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.1
    • /
    • pp.13-20
    • /
    • 2012
  • Due to its high conductivity, pyrylium has been frequently used in electron transfer reactions or in the synthesis of various organic materials. It has also been used as a sensor material. Traditionally, the compounds have been synthesized using various methods; mostly in a multiple steps. In this study, two pyrylium salts, 2, 6-di-(4'-methylphenyl) pyrylium fluoroborate and perchlorate were synthesized. The synthesis of these products was confirmed by 1H-NMR, LC/TOF-MS and FT-IR analyses while their photo-properties were analyzed using UV/VIS spectrophotometry. In addition, the electron transfer capacities of the salts were analyzed with a conductivity meter, it was found that their electron conductivities were high. When the synthesized compounds were dissolved in acetone, a green fluorescent material was observed to form. The fluorescent material can be used as a sensitizer in the electrical industry.

Structure-Guided Identification of Novel Phenolic and Phenolic Amide Allosides from the Rhizomes of Cimicifuga heracleifolia

  • Yim, Soon-Ho;Kim, Hyun-Jung;Jeong, Na-Ri;Park, Ki-Deok;Lee, Young-Ju;Cho, Sung-Dong;Lee, Ik-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.4
    • /
    • pp.1253-1258
    • /
    • 2012
  • Two phenolic allopyranosides and two phenolic amide allopyranosides, along with eight known phenolic compounds, including cimicifugic acids, shomaside B, fukiic acid, isoferulic acid, and piscidic acid, were isolated from the n-butanolic extract of rhizomes of Cimicifuga heracleifolia. On-line spectroscopic data for UV, NMR, and MS from a combination of LC-NMR and LC-MS techniques directly and rapidly provided sufficient structural information to identify and confirm all the structures of major phenolic compounds in the extract, in addition to their HPLC profiles. This combined analytic information was then used as a dereplication tool for structure-guided screening in order to isolate unknown phenolic compounds in the extract. Successive fractionation and purification using semi-preparative HPLC acquired four unknown allopyranosides, and their structures were identified as cis-ferulic acid 4-O-${\beta}$-D-allopyranoside, trans-ferulic acid 4-O-${\beta}$-D-allopyranoside, trans-feruloyltyramine 4-O-${\beta}$-D-allopyranoside, and trans-feruloyl-(3-O-methyl)dopamine 4-O-${\beta}$-D-allopyranoside, based on a subsequent spectroscopic interpretation.

Synthesis, Spectral Characterization, Electron Microscopic Study and Influence on the Thermal Stability of Phosphorus-containing Dendrimer with a 4,4'-Sulphonyldiphenol at the Core

  • Dadapeer, Echchukattula;Rasheed, Syed;Raju, Chamarthi Naga
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.2
    • /
    • pp.498-502
    • /
    • 2011
  • The divergent synthesis of novel phosphorus-containing dendrimer with 4,4'-sulphonyldiphenol at the core has been accomplished involving simple condensation reactions using $P(O)Cl_3$, $P(S)Cl_3$, 3-amino-phenol, 3-hydroxy-benzaldehyde, and 2-butyn 1, 4-diol. The final compound was a Schiff's base macromolecule possessing 4 imine bonds, 8 acetylenic bonds and 8 OH groups at the periphery. The structures of intermediate compounds were confirmed by IR, NMR ($^1H$, $^{13}C$ and $^{31}P$), LC-Mass and C, H, N analysis. The structure of the final dendrimer (5) was confirmed by IR, NMR ($^1H$, $^{13}C$ and $^{31}P$), MALDI-TOF-MS, and C, H, N analysis. The surface morphological characteristics of the final dendrimer were understood by Scanning Electronic Microscopic study (SEM). The thermal stability of the final dendrimer was studied by TGA/DTA analysis.