• 제목/요약/키워드: LC-MALDI-TOF/TOF

검색결과 22건 처리시간 0.03초

Zerumbone 처리에 따른 Helicobacter pylori의 단백질 비교분석 (Comparative Proteome Analysis of Zerumbone-treated Helicobacter pylori)

  • 김사현
    • 대한임상검사과학회지
    • /
    • 제50권3호
    • /
    • pp.275-283
    • /
    • 2018
  • Helicobacter pylori는 만성 위염, 위궤양 또는 위 선암을 비롯한 다양한 위장병의 원인균으로 알려져 있으며, 이 세균이 분비하는 cytotoxin-associated protein A (CagA), vacuolating cytotoxic protein A (VacA)와 같은 병원성 인자가 그 원인으로 알려져 있다. 본 연구에서는 zerumbone이 CagA, VacA를 비롯한 다양한 H. pylori의 병원성 인자들의 단백 발현양 변화에 정성적, 정량적으로 어떠한 영향을 미치는지 분석하였다. H. pylori 60190 (VacA 양성 / CagA 양성; Eastern type) 표준균주를 대상으로 하여 약 200개의 유의미한 단백을 선별한 후, 그 중에서 임상적으로 의의가 큰 13개 단백 분자에 대한 프로테옴 분석을 수행하였다. 이차원 전기 영동법(2 dimensional electrophoresis, 2-DE) 수행 후, 단백질 스팟의 정량적 측정에는 ImageMasterTM 2-DE Platinum 소프트웨어를 사용하였고, 단백 동정에는 matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-TOF-MS)와 liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS)를 사용하였다. 동정이 완료된 전체 단백 중에서 유의미한 변화를 보인 단백을 집중적으로 분석한 뒤에 필요에 따라 reverse transcription -polymerase chanin reaction을 수행하여 결과를 추가 검증하였다. 본 연구에서는 zerumbone이 보유한 새로운 약리학적 활성 기전을 스크리닝함으로써 향후 zerumbone이 H. pylori 감염증 치료제로서 어떠한 의미를 지니는지 규명하고자 하였다.

석유계 잔사유 기반 음극재 제조 및 그 전기화학적 특성 (Fabrication and the Electrochemical Characteristics of Petroleum Residue-Based Anode Materials)

  • 김대섭;임채훈;김석진;이영석
    • 공업화학
    • /
    • 제33권5호
    • /
    • pp.496-501
    • /
    • 2022
  • 본 연구에서는 석유 정제 부산물인 석유계 잔사유를 이용하여 리튬이차전지용 음극재를 제조하였다. 석유계 잔사유 중 열분해 연료유(pyrolysis fuel oil, PFO), 유동접촉분해 데칸트 오일(fluidized catalyst cracking-decant oil, FCC-DO), 감압잔사유(vacuum residue, VR)를 탄소 전구체로 사용하였다. MALDI-TOF, 원소분석(EA)을 통하여 석유계 잔사유의 물리화학적 특징을 확인하였고, 잔사유로부터 제조된 음극재는 XRD, Raman 등의 분석을 통해 그 구조적 특징을 평가하였다. VR은 PFO 및 FCC-DO에 비하여 광범위한 분자량 분포와 많은 양의 불순물을 함유하는 것을 확인할 수 있었고, PFO와 FCC-DO는 거의 유사한 물리화학적 특징을 나타내었다. XRD 분석결과로부터 탄화된 PFO와 FCC-DO는 유사한 d002값을 나타내었다. 그러나 Lc 및 La값에서는 FCC-DO가 PFO보다 더 발달된 층상구조를 갖는 것으로 확인되었다. 또한, 전기화학적 특성 평가에서는 FCC-DO가 가장 우수한 사이클 특성을 나타내었다. 이러한 석유계 잔사유의 물리화학적, 전기화학적 결과로 미루어 보아 FCC-DO가 PFO와 VR보다 더 우수한 리튬이차전지용 탄소 전구체인 것으로 사료된다.

나노 액체크로마토그래피-텐덤 질량분석기를 이용하여 N-당질화 위치 및 N-당사슬 구조 규명을 위한 방법 (A Sensitive Method for Identification of N-Glycosylation Sites and the Structures of N-Glycans Using Nano-LC-MS/MS)

  • 조영은;김숙경;백문창
    • 약학회지
    • /
    • 제57권4호
    • /
    • pp.250-257
    • /
    • 2013
  • Biosimilars are important drugs in medicine and contain many glycosylated proteins. Thorough analysis of the glycosylated protein is a prerequisite for evaluation of biosimilar glycan drugs. A method to assess the diversity of N-glycosylation sites and N-glycans from biosimilar glycan drugs has been developed using two separate methods, LC-MS/MS and MALDI-TOF MS, respectively. Development of sensitive, accurate, and efficient methods for evaluation of glycoproteins is still needed. In this study, analysis of both N-glycosylation sites and N-glycans of glycoprotein was performed using the same LC-MS/MS with two different nano-LC columns, nano-C18 and nano-porous graphitized carbon (nano-PGC) columns. N-glycosylated proteins, including RNAse B (one N-glycosylation site), Fetuin (three sites), and ${\alpha}$-1 acid glycoprotein (four sites), were used, and small amounts of each protein were used for identification of N-glycosylation sites. In addition, high mannose N-glycans (one type of typical glycan structure), Mannose 5 and 9, eluted from RNAse B, were successfully identified using nano-PGC-LC MS/MS analysis, and the abundance of each glycan from the glycoprotein was calculated. This study demonstrated an accurate and efficient method for determination of N-glycosylation sites and N-glycans of glycoproteins based on high sensitive LC-MS/MS using two different nano-columns; this method could be applied for evaluation of the quality of various biosimilar drugs containing N-glycosylation groups.

초기 염류 스트레스 반응 인삼 잎 단백질체 분석 (Proteomics Analysis of Early Salt-Responsive Proteins in Ginseng (Panax ginseng C. A. Meyer) Leaves)

  • 김소운;민철우;;조익현;방경환;김영창;김기홍;김선태
    • 한국약용작물학회지
    • /
    • 제22권5호
    • /
    • pp.398-404
    • /
    • 2014
  • Salt stress is one of the major abiotic stresses affecting the yield of ginseng (Panax ginseng C. A. Meyer). The objective of this study was to identify bio-marker, which is early responsive in salt stress in ginseng, using proteomics approach. Ginseng plants were exposed to 5 ds/m salt concentration and samples were harvested at 0, 6, 12 and 18 hours after exposure. Total proteins were extracted from ginseng leaves treated with salt stress using Mg/NP-40 buffer and were separated on high resolution 2-DE. Approximately $1003{\pm}240$ (0 h), $992{\pm}166$ (6 h), $1051{\pm}51$ (12 h) and $990{\pm}160$ (18 h) spots were detected in colloidal CBB stained 2D maps. Among these, 8 spots were differentially expressed and were identified by using MALDI-TOF/TOF MS or/and LC-MS/MS. Ethylene response sensor-1 (spot GL 1), nucleotide binding protein (spot GL 2), carbonic anhydrase-1 (spot GL 3), thylakoid lumenal 17.9 kDa protein (spot GL 4) and Chlorophyll a/b binding protein (spot GL 5, GL 6) were up-regulated at the 12 and 18 hour, while RuBisCO activase B (spot GL 7) and DNA helicase (spot GL 8) were down-regulated. Thus, we suggest that these proteins might participate in the early response to salt stress in ginseng leaves.

Comparative Proteome Analysis of Cyanidin 3-O-glucoside Treated Helicobacter pylori

  • Kim, Sa-Hyun;Kim, Jong-Bae
    • 대한의생명과학회지
    • /
    • 제21권4호
    • /
    • pp.233-240
    • /
    • 2015
  • Some virulence proteins of Helicobacter pylori, such as vacuolating cytotoxic protein A (VacA) and cytotoxin-associated gene protein A (CagA) have been reported to be causative agents of various gastric diseases including chronic gastritis, gastric ulcer or gastric adenocarcinoma. The expression level of these virulence proteins can be regulated when H. pylori is exposed to the antibacterial agent, cyanidin 3-O-glucoside (C3G) as previously reported. In this study, we analyzed the quantitative change of various virulence proteins including CagA and VacA by C3G treatment. We used 2-dimensional electrophoresis (2-DE) to analyze the quantitative change of representative ten proteome components of H. pylori 60190 ($VacA^+/CagA^+$; standard strain of Eastern type). After 2-DE analysis, spot intensities were analyzed using ImageMaster$^{TM}$ 2-DE Platinum software then each spot was identified using matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF-MS) or peptide sequencing using Finnigan LCQ ion trap mass spectrometer (LC-MS/MS). Next, we selected major virulence proteins of H. pylori among quantitatively meaningful ten spots and confirmed the 2-DE results by Western blot analysis. These results suggest that cyanidin 3-O-glucoside can modulate a variety of H. pylori pathogenic determinants.

The Effect of Protein Expression of Streptococcus pneumoniae by Blood

  • Bae, Song-Mee;Yeon, Sun-Mi;Kim, Tong-Soo;Lee, Kwang-Jun
    • BMB Reports
    • /
    • 제39권6호
    • /
    • pp.703-708
    • /
    • 2006
  • During infection, the common respiratory tract pathogen Streptococcus pneumoniae encounters several environmental conditions, such as upper respiratory tract, lung tissue, and blood stream, etc. In this study, we examined the effects of blood on S. pneumoniae protein expression using a combination of highly sensitive 2-dimensional electrophoresis (DE) and MALDI-TOF MS and/or LC/ESI-MS/MS. A comparison of expression profiles between the growth in THY medium and THY supplemented with blood allowed us to identify 7 spots, which increased or decreased two times or more compared with the control group: tyrosyl-tRNA synthetase, lactate oxidase, glutamyl-aminopeptidase, L-lactate dehydrogenase, cysteine synthase, ribose-phosphate pyrophosphokinase, and orotate phosphoribosyltransferase. This global approach can provide a better understanding of S. pneumoniae adaptation to its human host and a clue for its pathogenicity.

Comparison of Antioxidant Activities of Hydrolysates of Domestic and Imported Skim Milk Powders Treated with Papain

  • Ha, Go Eun;Chang, Oun Ki;Han, Gi Sung;Ham, Jun Sang;Park, Beom-Young;Jeong, Seok-Geun
    • 한국축산식품학회지
    • /
    • 제35권3호
    • /
    • pp.360-369
    • /
    • 2015
  • Milk proteins have many potential sequences within their primary structure, each with a specific biological activity. In this study, we compared and investigated the bioactivities of hydrolysates of the domestic (A, B) and imported (C, D) skim milk powders generated using papain digestion. MALDI-TOF analysis revealed that all milk powder proteins were intact, indicating no autolysis. Electrophoretic analysis of hydrolysates showed papain treatment caused degradation of milk proteins into peptides of various size. The antioxidant activity of the hydrolysates, determined using 2,2-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and total phenolic contents (TPC) assays, increased with incubation times. In all skim milk powders, the antioxidant activities of hydrolysates were highest following 24 h papain treatment (TPC: A, 196.48 μM GE/L; B, 194.52 μM GE/L; C, 194.76 μM GE/L; D, 163.75 μM GE/L; ABTS: A, 75%; B, 72%; C, 72%; D, 57%). The number of peptide derived from skim milk powders, as determined by LC-MS/MS, was 308 for A, 283 for B, 208 for C, and 135 for D. Hydrolysate A had the highest antioxidant activity and the most potential antioxidant peptides amongst the four skim milk powder hydrolysates. A total of 4 β-lactoglobulin, 4 αs1-casein, and 56 β-casein peptide fragments were identified as potential antioxidant peptides in hydrolysate A by LC-MS/MS. These results suggest that domestic skim milk could have applications in various industries, i.e., in the development of functional foods.

Proteome Analysis of Chicken Embryonic Gonads: Identification of Major Proteins from Cultured Gonadal Primordial Germ Cells

  • Lee, Sang-In;Han, Beom-Ku;Park, Sang-Hyun;Kim, Tae-Min;Sin, Sang-Soo;Lee, Young-Mok;Kim, Hee-Bal;Lim, Jeong-Mook;Han, Jae-Yong
    • 한국가금학회:학술대회논문집
    • /
    • 한국가금학회 2005년도 제22차 정기총회 및 학술발표회
    • /
    • pp.66-67
    • /
    • 2005
  • 배자 생식세포 발달에 관련된 메카니즘을 밝혀내기 위해서, 닭 배자 생식기에서 추출한 원시 생식세포의 단백질체 지도를 만들었다. 총 500 배자를 6일간 배양하여 배자 생식기를 획득했고, 7-10일 배양 후, 배양된 원시생식세포는 2차원 젤 전기 영동법에 의해 분할되어 졌다. 유의적 발현 수준을 나타낸 많은 단백질 스팟 들은 MALDI-TOP 와 LC-MS/MS에 의해 확인되었으며, 89개의 단백질 스팟 중에 50개의 mass spectra 들이 데이터베이스에서 조류 단백질과 일치함을 확인하였다. 본 실험에서 행한 단백질체 지도는 형질전환 연구와 생식세포 생물학 분야에 중요한 참고 문헌으로 가치를 가질수 있을 것이다.

  • PDF

Proteomics Analysis of Gastric Epithelial AGS Cells Infected with Epstein-Barr Virus

  • Ding, Yong;Li, Xiao-Rong;Yang, Kai-Yan;Huang, Li-Hua;Hu, Gui;Gao, Kai
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권1호
    • /
    • pp.367-372
    • /
    • 2013
  • Effects of the Epstein-Barr virus (EBV) on cellular protein expression are essential for viral pathogenesis. To characterize the cellular response to EBV infection, differential proteomes of gastric epithelial AGS cells were analyzed with two-dimensional gel electrophoresis (2-DE) followed by matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) and liquid chromatography electrospray/ionization ion trap (LC-ESI-IT) mass spectrometry identification. Mass spectrometry identified 9 altered cellular proteins, including 5 up-regulated and 4 down-regulated proteins after EBV infection. Notably 2-DE analysis revealed that EBV infection induced increased expression of heat shock cognate 71 kDa protein, actin cytoplasmic 1, pyridoxine-5'-phosphate oxidase, caspase 9, and t-complex protein 1 subunit alpha. In addition, EBV infection considerably suppressed those cellular proteins of zinc finger protein 2, cyclin-dependent kinase 2, macrophage-capping protein, and growth/differentiation factor 11. Furthermore, the differential expressional levels of partial proteins (cyclin-dependent kinase 2 and caspase 9) were confirmed by Western blot analysis.Thus, this work effectively provided useful protein-related information to facilitate further investigation of the mechanisms underlying EBV infection and pathogenesis.

Proteomic Analysis of Protein Expression in Streptococcus pneumoniae in Response to Temperature Shift

  • Lee Myoung-Ro;Bae Song-Mee;Kim Tong-Soo;Lee Kwang-Jun
    • Journal of Microbiology
    • /
    • 제44권4호
    • /
    • pp.375-382
    • /
    • 2006
  • From its initial colonization to causation of disease, Streptococcus pneumoniae has evolved strategies to cope with a number of stressful in vivo environmental conditions. In order to analyze a global view of this organism's response to heat shock, we established a 2-D electrophoresis proteome map of the S. pneumoniae D39 soluble proteins under in vitro culture conditions and performed the comparative proteome analysis to a 37 to $42^{\circ}C$ temperature up-shift in S. pneumoniae. When the temperature of an exponentially growing S. pneumoniae D39 culture was raised to $42^{\circ}C$, the expression level of 25 proteins showed changes when compared to the control. Among these 25 proteins, 12 were identified by MALDI-TOF and LC-coupled ESI MS/MS. The identified proteins were shown to be involved in the general stress response, energy metabolism, nucleotide biosynthesis pathways, and purine metabolism. These results provide clues for understanding the mechanism of adaptation to heat shock by S. pneumoniae and may facilitate the assessment of a possible role for these proteins in the physiology and pathogenesis of this pathogen.