• Title/Summary/Keyword: LC-HR/MS

Search Result 68, Processing Time 0.025 seconds

Screening of Effective Components from Kale to Inhibit N - Nitrosodimethylamine Formation (케일로부터 N-Nitrosamine 생성을 억제시키는 유효성분의 검색)

  • 정미자;이수정;최선영;성낙주
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.32 no.2
    • /
    • pp.223-229
    • /
    • 2003
  • An amine rich diet with nitrate was incubated in simulated saliva, gastric juice, kale juice, and its ascorbate and methanol soluble portions (5, 10, 15 and 30 mL) for 1 hr at 37$^{\circ}C$ and N-nitrosodimethylamine (NDMA) was detected in the digestion sample, Kale juice and its ascorbate and methanol soluble portions at 30mL inhibited NDMA formation by 60.1$\pm$4.4%, 49.3$\pm$1.2% and 50.1$\pm$2.0%, respectively. The methanol soluble portion was further fractionated by preparative-LC (prep-LC). Nitrite-scavenging effects of 7 methanol soluble portion (Kl, K2, K3, K4, K5, K6 and K7) in kale juice were 2.0 ~56.2%. Among seven fractions, K3, K4, K5 and K7 exhibited weakly on nitrite scavenging effect. Fraction Kl and K2 inhibited NDMA formation by 71.0 and 65.5%, respectively. Fraction Kl and K2 was further separated by prep-LC into 6 subfractions (Kla, Klb, Klc, K2a, K2b and 2nc). Those subfractions inhibited NDMA formation by 40.9 ~80.4%. The K2a subfraction was screened by MS, $^1$H-NMR, $^{13}$ C-NMR and DEPT spectrum.

Study for Residue Analysis of Pinoxaden in Agricultural Commodities

  • Kim, Ji Young;Yoon, Eun Kyung;Kim, Jong Soo;Seong, Nu Ri;Yun, Sang Soon;Jung, Yong Hyun;Oh, Jae Ho;Kim, Hyochin
    • Korean Journal of Environmental Agriculture
    • /
    • v.38 no.4
    • /
    • pp.321-331
    • /
    • 2019
  • BACKGROUND: Pinoxaden is the phenylpyrazoline herbicide developed by Syngenta Crop Protection, Inc. and marketed on 2006. The maximum residue levels for wheat and barley were set by import tolerance. Thus, Ministry of Food and Drug Safety (MFDS) official analytical method determining Pinoxaden residue was necessary in various food matrixes. Satisfaction of international guideline of CODEX (Codex Alimentarius Commission CAC/GL 40) and National Institute of Food and Drug Safety Evaluation-MFDS (2017) are additional pre-requirements for analytical method. In this study, liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was investigated to analyze residue of Pinoxaden (M4), which is defined as pesticide residue in Korea, in foods. METHODS AND RESULTS: Pinoxaden (M4) was extracted followed by acid digestion (2hr reflux with 1N HCl) and pH adjusting (pH 4-5 with 3% ammonium solution). To remove oil, additional clean-up step with hexane saturated with acetonitrile was required to high oil contained sample before purification. HLB cartridge and nylon syringe filter were used for purification. Then, samples were analyzed by LC-MS/MS using reserve phase column C18. Five agricultural group representative commodities (mandarin, potato, soybean, hulled rice, and red pepper) were used to verify the method in this study. The liner matrix-matched calibration curves were confirmed with coefficient of determination (r2) > 0.99 at calibration range 0.002-0.2 mg/kg. The limits of detection and quantitation were 0.004 and 0.01 mg/kg, respectively, which were suitable to apply Positive List System (PLS). Mean average accuracies of pinoxaden (M4) were shown to be 74.0-105.7%. The precision of pinoxaden and its metabolites were also shown less than 14.5% for all five samples. CONCLUSION: The method investigated in this study was suitable to CODEX (CAC/GL 40) and National Institute of Food and Drug Safety Evaluation-MFDS (2017) guideline for residue analysis. Thus, this method can be useful for determining the residue in various food matrixes in routine analysis.

Bioequivalence of DilastTM Capsule to Ketas® Capsule (Ibudilast 10 mg) (케타스캅셀(이부딜라스트 10 mg)에 대한 딜라스트캡슐의 생물학적동등성)

  • Chang, Kyu-Young;Kang, Seong-Woo;Yoo, Eun-Ju;Lew, Soo-Hyun;Lee, Kyung-Ryul;Lee, Hee-Joo
    • Journal of Pharmaceutical Investigation
    • /
    • v.37 no.3
    • /
    • pp.197-203
    • /
    • 2007
  • A bioequivalence study of $Dilast^{TM}$ Capsule (Chong Kun Dang Pharma. Co., Ltd.) to $Ketas^{(R)}$ Capsule (Han Dok Pharma. Co., Ltd.) was conducted according to the guidelines of Korea Food and Drug Administration (KFDA). Twenty eight healthy male Korean volunteers received each medicine at the ibudilast dose of 20 mg in a $2{\times}2$ crossover study. There was one week wash-out period between the doses. Plasma concentrations of ibudilast were monitored by a liquid chromatography-tandem mass spectrometry (LC-MS/MS) for over a period of 36 hours after drug administration. $AUC_t$ (the area under the plasma concentration-time curve from time zero to 36 hr) was calculated by the linear trapezoidal rule method. $C_{max}$ (maximum plasma drug concentration) and $T_{max}$ (time to reach $C_{max}$) were compiled from the plasma concentration-time data. Analysis of variance was carried out using logarithmically transformed $AUC_t\;and\;C_{max}$. No significant sequence effect was found for all of the bioavailability parameters indicating that the crossover design was properly performed. The 90% confidence intervals of the $AUC_t$ ratio and the $C_{max}$ ratio for $Dilast^{TM}$ $Capsule/Ketas^{(R)}$ Capsule were $log0.93{\sim}log1.06$ and $log0.93{\sim}log1.11$, respectively. These values were within the acceptable bioequivalence intervals of $log0.80{\sim}log1.25$. Thus, our study demonstrated the bioequivalence of $Dilast^{TM}$ Capsule and $Ketas^{(R)}$ Capsule with respect to the rate and extent of absorption.

Milk Transfer and Toxicokinetics of Valproic Acid in Lactating Cynomolgus Monkeys

  • Lee, Jong-Hwa;Yu, Wook-Joon;Jeong, Eun Ju;Chung, Moon-Koo
    • Toxicological Research
    • /
    • v.29 no.1
    • /
    • pp.53-60
    • /
    • 2013
  • Studies on milk transfer of drugs in non-human primates (NHPs) are among the crucial components in the assessment of peri- and postnatal toxicity because of the similarity between NHPs and humans. To evaluate the milk transfer of valproic acid (VPA) in NHPs, the toxicokinetics of VPA, an antiepileptic drug, were studied in pregnant cynomolgus monkeys. VPA was administered once daily to pregnant cynomolgus monkeys at doses of 0, 30, 90, and 270 mg/kg by oral gavage from Day 100 of gestation (GD 100) to Day 31 of lactation (LD 31). Concentrations of VPA and its metabolite, 4-ene-VPA, in the maternal plasma on GD 100, GD 140, and LD 30, and concentrations of VPA and 4-ene-VPA in the offspring plasma and milk on LDs 30 and 31, respectively, were quantified using liquid chromatography tandem mass spectrometry (LC/MS/MS). After administration of a single oral dose of VPA to pregnant monkeys on GD 100, the concentrations of VPA and 4-ene-VPA were generally quantifiable in the plasma of all treatment groups up to 24 hr after administration, which showed that VPA was absorbed and that the monkeys were systemically exposed to VPA and 4-ene-VPA. After administration of multiple doses of VPA to the monkeys, VPA was detected in the pup's plasma and in milk taken on LD 30 and LD 31, respectively, which showed that VPA was transferred via milk, and the pup was exposed to VPA. Further, the concentration of VPA in the milk increased with an increase in the dose. Extremely low concentrations of 4-ene VPA were detected in the milk and in the pup plasma. In conclusion, pregnant monkeys were exposed to VPA and 4-ene-VPA after oral administration of VPA at doses of 30, 90, and 270 mg/kg/day from GD 100 to LD 31. VPA was transferred via milk, and the VPA exposure to the pup increased with an increase in the dose of VPA. The metabolite, 4-ene VPA, was present in extremely low concentrations (< 0.5 ${\mu}g/ml$) in the milk and in the pup plasma. In this study, we established methods to confirm milk transfer in NHPs, such as mating and diagnosis of pregnancy by examining gestational sac with ultrasonography, collection of milk and pup plasma and determination of toxicokinetics, using cynomolgus monkeys.

Bioequivalence of LANIDIEM® Tablet 4 mg to Vaxar® Tablet 4 mg(Lacidipine 4 mg) (박사르®정 4 밀리그램(라시디핀 4 mg)에 대한 라니디엠®정 4 밀리그램의 생물학적동등성)

  • Lee, Yun-Young;Kim, Hye-Jin;La, Sookie;Cho, Kyung-Hee;Jang, Moon-Sun;Park, Young-Joon;Lee, Hee-Joo
    • Journal of Pharmaceutical Investigation
    • /
    • v.40 no.2
    • /
    • pp.125-131
    • /
    • 2010
  • A bioequivalence study of LANIDIEM$^{(R)}$ tablet 4 mg (Samil. Co., Ltd.) to Vaxar$^{(R)}$ tablet 4 mg (GlaxoSmithKline Co., Ltd.) was conducted according to the guidelines of Korea Food and Drug Administration (KFDA). Forty healthy male Korean volunteers were enrolled in the study and thirty six volunteers completed the study according to the protocol. Thirty six volunteers received each medicine at the lacidipine dose of 4 mg in a $2{\times}2$ crossover study. There was one week wash-out period between the doses. Plasma concentrations of lacidipine were monitored by a high performance liquid chromatography - tandem mass spectrometry (LC-MS/MS) for over a period of 24 hours after drug administration. $AUC_t$ (the area under the plasma concentration-time curve from time zero to 24 hr) was calculated by the linear trapezoidal rule method. $C_{max}$ (maximum plasma drug concentration) and $T_{max}$ (time to reach $C_{max}$) were compiled from the plasma concentration-time data. Analysis of variance was carried out using logarithmically transformed $AUC_t$ and $C_{max}$. No significant sequence effect was found for all of the bioavailability parameters indicating that the crossover design was properly performed. The 90% confidence intervals of the $AUC_t$ ratio and the $C_{max}$ ratio for LANIDIEM$^{(R)}$/Vaxar$^{(R)}$ were log 0.8102~log 1.0417 and log 0.8493~log 1.1439, respectively. These values were within the acceptable bioequivalence intervals of log 0.80~log 1.25. Thus, our study demonstrated the bioequivalence of LANIDIEM$^{(R)}$ tablet 4 mg and Vaxar$^{(R)}$ tablet 4 mg with respect to the rate and extent of absorption.

Bioequivalence of Atorva Tablet® to Lipitor Tablet® (Atorvastatin 20 mg) (리피토정® (아토르바스타틴 20 mg)에 대한 아토르바정®의 생물학적동등성)

  • Lim, Hyun-Kyun;Lee, Tae-Ho;Lee, Jae-Hyun;Youm, Jeong-Rok;Song, Jin-Ho;Han, Sang-Beom
    • Journal of Pharmaceutical Investigation
    • /
    • v.38 no.2
    • /
    • pp.135-142
    • /
    • 2008
  • The present study describes the evaluation of the bioequivalence of two atorvastatin tablets, Lipitor $Tablet^{(R)}$ (Pfizer, reference drug) and Atorva $Tablet^{(R)}$ (Yuhan, test drug), according to the guidelines of Korea Food and Drug Administration (KFDA). Forty-nine healthy male Korean volunteers received each medicine at the atorvastatin dose of 40 mg in a $2{\times}2$ crossover study with a two weeks washout interval. After drug administration, serial blood samples were collected at a specific time interval from 0-48 hours. The plasma atorvastatin concentrations were monitored by an high performance liquid chromatography -tandem mass spectrometer (LC-MS/MS) employing electrospray ionization technique and operating in multiple reaction monitoring (MRM) and positive ion mode. The total chromatographic run time was 4.5 min and calibration curves were linear over the concentration range of 0.1-100 ng/mL for atorvastatin. The method was validated for selectivity, sensitivity, linearity, accuracy and precision. $AUC_t$ (the area under the plasma concentration-time curve from time zero to 48hr) was calculated by the linear log trapezoidal rule method. $C_{max}$ (maximum plasma drug concentration) and $T_{max}$ (time to reach $C_{max}$) were complied trom the plasma concentration-time data. Analysis of variance was carried out using logarithmically transformed $AUC_t$ and $C_{max}$. No significant sequence effect was found for all of the bioavailability parameters indicating that the crossover design was properly performed. The 90% confidence intervals of the $AUC_t$ ratio and the $C_{max}$ ratio for Atorva $Tablet^{(R)}$ / Lipitor $Tablet^{(R)}$ were ${\log}\;0.9413{\sim}{\log}\;1.0179$ and ${\log}\;0.831{\sim}{\log}\;1.0569$, respectively. These values were within the acceptable bioequivalence intervals of ${\log}\;0.8{\sim}{\log}\;1.25$. Based on these statistical considerations, it was concluded that the test drug, Atorva $Tablet^{(R)}$ was bioequivalent to the reference drug, Lipitor $Tablet^{(R)}$.

Simultaneous Determination of Synthetic Phosphodiesterase-5 Inhibitors in Dietary Supplements by Liquid Chromatography-High Resolution/Mass Spectrometry

  • Kim, So-Hee;Kim, Ho-Jun;Son, Jung-Hyun;Jeon, Byoung-Wook;Jeong, Eun-Sook;Cha, Eun-Ju;Lee, Jae-Ick
    • Mass Spectrometry Letters
    • /
    • v.3 no.2
    • /
    • pp.50-53
    • /
    • 2012
  • After success of sildenafil for the treatment of erectile dysfunction, a large number of its analogues have been approved from FDA. Recently, the illegal dietary supplements which include sildenafil, vardenafil, tadalafil, or analogues of these drugs as ingredient have been widely distributed. Therefore, the determination of the residue of synthetic phosphodiesterase- 5 (PDE-5) inhibitors in dietary supplements is highly required due to indiscriminate and unintentional overdose caused nausea, chest pains, fainting and irregular heartbeat. In this paper, we report a rapid and sensitive analytical method for the simultaneous determination of nine phosphodiesterase-5 inhibitors by liquid chromatography-high resolution mass spectrometry. The present method was found to be accurate and reproducible with 40 ${\mu}g$/g of the limit of quantification for the nine PDE-5 inhibitors. The developed method can be successfully applied to the analysis of the seven illegal dietary supplements.

Inhibition of Sphingolipid Metabolism Enhances Resveratrol Chemotherapy in Human Gastric Cancer Cells

  • Shin, Kyong-Oh;Park, Nam-Young;Seo, Cho-Hee;Hong, Seon-Pyo;Oh, Ki-Wan;Hong, Jin-Tae;Han, Sang-Kil;Lee, Yong-Moon
    • Biomolecules & Therapeutics
    • /
    • v.20 no.5
    • /
    • pp.470-476
    • /
    • 2012
  • Resveratrol, a chemopreventive agent, is rapidly metabolized in the intestine and liver via glucuronidation. Thus, the pharmacokinetics of resveratrol limits its efficacy. To improve efficacy, the activity of resveratrol was investigated in the context of sphingolipid metabolism in human gastric cancer cells. Diverse sphingolipid metabolites, including dihydroceramides (DHCer), were tested for their ability to induce resveratrol cytotoxicity. Exposure to resveratrol ($100{\mu}M$) for 24 hr induced cell death and cell cycle arrest in gastric cancer cells. Exposure to the combination of resveratrol and dimethylsphingosine (DMS) increased cytotoxicity, demonstrating that sphingolipid metabolites intensify resveratrol activity. Specifically, DHCer accumulated in a resveratrol concentration-dependent manner in SNU-1 and HT-29 cells, but not in SNU-668 cells. LC-MS/MS analysis showed that specific DHCer species containing C24:0, C16:0, C24:1, and C22:0 fatty acids chain were increased by up to 30-fold by resveratrol, indicating that resveratrol may partially inhibit DHCer desaturase. Indeed, resveratrol mildly inhibited DHCer desaturase activity compared to the specific inhibitor GT-11 or to retinamide (4-HPR); however, in SNU-1 cells resveratrol alone exhibited a typical cell cycle arrest pattern, which GT-11 did not alter, indicating that inhibition of DHCer desaturase is not essential to the cytotoxicity induced by the combination of resveratrol and sphingolipid metabolites. Resveratrol-induced p53 expression strongly correlated with the enhancement of cytotoxicity observed upon combination of resveratrol with DMS or 4-HPR. Taken together, these results show that DHCer accumulation is a novel lipid biomarker of resveratrol-induced cytotoxicity in human gastric cancer cells.

A study of the metabolites for 7-keto-DHEA-acetate in human urine (II) (뇨시료에 함유된 7-keto-DHEA-acetate의 대사체에 관한 연구 (II))

  • Kim, Yunje;Lee, Jinhee
    • Analytical Science and Technology
    • /
    • v.17 no.5
    • /
    • pp.401-409
    • /
    • 2004
  • The 7-keto-DHEA-acetate is converted to 7-keto-DHEA, a metabolite of DHEA, and similar to its metabolism. We studied the metabolite M3, M4, and M5 of 7-keto-DHEA-acetate. The estimated molecular weight of M3 and M4 was 304 which were supposed to have more 3 hydroxyl and/or ketone groups. We could know that M3 is the 7-OH-DHEA which has the hydroxyl groups on 3 and 7-carbon and a ketone group on 17-carbon. In case of M4, it is the 7-oxo-diol metabolite which has the hydroxyl groups on 3 and 17-carbon and a ketone group on 7-carbon. The M5 was supposed that the molecular weight is 320 and has the three hydroxyl groups on 3, 6, and 16 carbon and the ketone group on 17-carbon. After dosing, 7-OH-DHEA showed the maximum urine flow in human urine after 5 hr and decreased rapidly. But we could find it until 58 hr why is a higher remaining substance.

Effect of Gamiondam-tang (GMODT), a Polyherbal Formula on the Pharmacokinetics Profiles of Tamoxifen in Male SD Rats

  • Ryu, Eun-A;Kang, Su-Jin;Song, Chang-Hyun;Lee, Bong-Hyo;Choi, Seong-Hun;Han, Chang-Hyun;Lee, Young-Joon;Ku, Sae-Kwang
    • The Journal of Korean Medicine
    • /
    • v.38 no.2
    • /
    • pp.61-72
    • /
    • 2017
  • Objectives: The effects of Gamiondam-tang (GMODT) co-administration within 5min on the pharmacokinetics (PK) of tamoxifen were observed as a process of the comprehensive and integrative medicine, combination therapy of tamoxifen with GMODT to achieve synergic pharmacodynamics and reduce toxicity on the breast cancer. Methods: After 50mg/kg of tamoxifen treatment, GMODT 100mg/kg was administered within 5min. The plasma were collected at 30 min before administration, 30 min, 1, 2, 3, 4, 6, 8 and 24 hrs after end of GMODT treatment, and plasma concentrations of tamoxifen were analyzed using LC-MS/MS methods. PK parameters of tamoxifen (Tmax, Cmax, AUC, $t_{1/2}$ and $MRT_{inf}$) were analysis as compared with tamoxifen single administered rats using noncompartmental pharmacokinetics data analyzer programs. Results: Co-administration with GMODT induced increased trends of plasma tamoxifen concentrations to 1hr after end of administration, and then showed decreased trends of plasma tamoxifen concentrations, and especially significant (p<0.05) increases of plasma tamoxifen concentrations were demonstrated at 0.5hr after end of co-administration with GMODT and also related significant (p<0.05) decreases of $AUC_{0-inf}$ and $MRT_{inf}$ as compared with tamoxifen single formula treated rats, at dosage levels of tamoxifen 10 mg/kg and GMODT 100 mg/kg within 5 min, in this experiment. Conclusion: Based on the results of the present study, it is considered that single co-administration GMODT within 5min significantly inhibited the oral bioavailability of tamoxifen through variable influences on the absorption and excretion of tamoxifen, can be influenced on the toxicity or pharmacodynamic of tamoxifen.