• Title/Summary/Keyword: LC oscillator

Search Result 85, Processing Time 0.027 seconds

An On-Chip Differential Inductor and Its Use to RF VCO for 2 GHz Applications

  • Cho, Je-Kwang;Nah, Kyung-Suc;Park, Byeong-Ha
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.4 no.2
    • /
    • pp.83-87
    • /
    • 2004
  • Phase noise performance and current consumption of Radio Frequency (RF) Voltage-Controlled Oscillator (VCO) are largely dependent on the Quality (Q) factor of inductor-capacitor (LC) tank. Because the Q-factor of LC tank is determined by on-chip spiral inductor, we designed, analyzed, and modeled on-chip differential inductor to enhance differential Q-factor, reduce current consumption and save silicon area. The simulated inductance is 3.3 nH and Q-factor is 15 at 2 GHz. Self-resonance frequency is as high as 13 GHz. To verify its use to RF applications, we designed 2 GHz differential LC VCO. The measurement result of phase noise is -112 dBc/Hz at an offset frequency of 100 kHz from a 2GHz carrier frequency. Tuning range is about 500 MHz (25%), and current consumption varies from 5mA to 8.4 mA using bias control technique. Implemented in $0.35-{\mu}m$ SiGe BiCMOS technology, the VCO occupies $400\;um{\times}800\;um$ of silicon area.

LC VCO using dual metal inductor in $0.18{\mu}m$ mixed signal CMOS process

  • Choi, Min-Seok;Jung, Young-Ho;Shin, Hyung-Cheol
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.503-504
    • /
    • 2006
  • This paper presents the design and fabrication of a LC voltage-controlled oscillator (VCO) using 1-poly 6-metal mixed signal CMOS process. To obtain the high-quality factor inductor in LC resonator, patterned-ground shields (PGS) is placed under the symmetric inductor to reduce the effect from image current of resistive Si substrate. Moreover, due to the incapability of using thick top metal layer of which the thickness is over $2{\mu}m$, as used in many RF CMOS process, the structure of dual-metal layer in which we make electrically short circuit between the top metal and the next metal below it by a great number of via materials along the metal traces is adopted. The circuit operated from 2.63 GHz to 3.09 GHz tuned by accumulation-mode MOS varactor. The corresponding tuning range was 460 MHz. The measured phase noise was -115 dBc/Hz @ 1MHz offset at 2.63 GHz carrier frequency and the current consumption and the corresponding power consumption were about 2.6 mA and 4.68 mW respectively.

  • PDF

VCO Oscillation Characteristics by Varying the Length of the MSL of LC Resonator (LC공진기의 MSL길이에 따른 VCO 발진 특성)

  • 이동희;정진휘
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.5
    • /
    • pp.412-418
    • /
    • 2002
  • In this paper, the authors present the simulation results and the experimental considerations on the effects of the effects of the VCO oscillation characteristics caused by varying the length of the MSL and the composition capacitance of LC resonation circuity. Simulation was accomplished by nonlinear RF circuit simulator for designing and analyzing the RF characteristis of VCO. The samples with 3 different MSL lengths of which the length is 140mil, 280mil and 560mil respectively were fabricated by screen printing process. The oscillation frequency of each sample(VCO) was tuned to UHF band (750MHz~900MHz) by varying the capacitance of LC resonator circuit. The experimental results showed that the values of phase noise were -82, -93, -97[dBc/Hz] at 50[kHz] offset frequency, the pushing figures were 114, 94, 318[kHz] at applied voltage of $3\pm0.15$[V] and the harmonics were -21, -16, -13[dBc] for MSL lengths of 140mil 280mil, 560mil respectively. The frequency and output variation width were 779~898[MHz], -36~-33[dBm] for MSL with 140mil length; 818~836[MHz], -27.19~27.06[dBm] for 280mil; 751.54~751.198[MHz], -33.44~-33.31[dBm] for 560mil.

[ $8{\sim}10.9$ ]-GHz-Band New LC Oscillator with Low Phase-Noise and Wide Tuning Range for SONET communication (SONET 통신 시스템을 위한 $8{\sim}10.9$ GHz 저 위상 잡음과 넓은 튜닝 범위를 갖는 새로운 구조의 LC VCO 설계)

  • Kim, Seung-Hoon;Cho, Hyo-Moon;Cho, Sang-Bock
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.1
    • /
    • pp.50-55
    • /
    • 2008
  • In this paper, New LC VCO with $8{\sim}10.9$ GHz Band has been designed using commercial $0.35-{\mu}m$ CMOS technology. This proposed circuit is consisted of the parallel construction of the typical NMOS and PMOS cross-coupled pair which is based on the LC tank, MOS cross-coupled pair which has same tail current of complementary NMOS and PMOS, and output buffer. The designed LC VCO, which is according to proposed structure in this paper, takes a 29% improvement of the wide tuning range as 8 GHz to 10.9 GHz, and a 6.48mW of low power dissipation. Its core size is $270{\mu}m{\times}340{\mu}m$ and its phase noise is as -117dBc Hz and -137dBc Hz at 1-MHz and 10-MHz offset, respectively. FOM of the new proposed LC VCO gets -189dBc/Hz at a 1-MHz offset from a 10GHz center frequency. This design is very useful for the 10Gb/s clock generator and data recovery integrated circuit(IC) and SONET communication applications.

VCO fabrication using Microstrip Line operating at the UHF frequency band (UHF대역에서 동작하는 마이크로스트립라인을 이용한 VCO 제작)

  • Rhie, Dong Hee;Jung, Jin-Hwee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.05c
    • /
    • pp.55-58
    • /
    • 2001
  • In this paper, we present the results of the design and fabrication of the VCO(Voltage controlled Oscillator) using RF circuit simulator GENESYS and electromagnetic field simulator EMpower Frequency range is fabricated VCO is 850 MHz ~ 950 MHz, which is used Colpitts Circuit. the fabricated VCO is consisted of resonator, oscillator and MSL(Microstrip Line) is used in LC tuning circuit.(operated by negative feedback) MSL(Microstrip Line), Varactor(Plastic package), low noise TR(SOT-23), chip inductor(1608), chip capacitor(1005), chip resistance(1005). 1005 type is used for sample fabrication of VCO. In the fabrication process, circuit pattern is screen printed on the alumina substrates of over 99.9% purity. Center frequency of the sample VCO is 850MHz at $V_T=1.5V$, while the simulated value was 1.0GHz at $V_T=1.5V$. Variable frequency range of the sample is 860~950MHz in contrast to the 1068~1100MHz of the simulated values.

  • PDF

VCO fabrication using Microstrip Line operating at the UHF frequency band (UHF대역에서 동작하는 마이크로스트립라인을 이용한 VCO 제작)

  • Rhie, Dong-Hee;Jung, Jin-Hwee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.05c
    • /
    • pp.153-156
    • /
    • 2001
  • In this paper, we present the results of the design and fabrication of the VCO(Voltage controlled Oscillator) using RF circuit simulator GENESYS and electromagnetic field simulator EMpower Frequency range is fabricated VCO is 850 MHz ~ 950 MHz, which is used Colpitts Circuit. the fabricated VCO is consisted of resonator, oscillator and MSL(Microstrip Line) is used in LC tuning circuit.(operated by negative feedback) MSL(Microstrip Line), Varactor(Plastic package), low noise TR(SOT-23), chip inductor(1608), chip capacitor(1005), chip resistance(1005). 1005 type is used for sample fabrication of VCO. In the fabrication process, circuit pattern is screen printed on the alumina substrates of over 99.9% purity. Center frequency of the sample VCO is 850MHz at $V_T$=1.5V, while the simulated value was 1.0GHz at $V_T$=1.5V. Variable frequency range of the sample is 860~950MHz in contrast to the 1068~1100MHz of the simulated values.

  • PDF

Single-balanced Direct Conversion Quadrature Receiver with Self-oscillating LMV

  • Nam-Jin Oh
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.15 no.3
    • /
    • pp.122-128
    • /
    • 2023
  • This paper proposes two kinds of single-balanced direct conversion quadrature receivers using selfoscillating LMVs in which the voltage-controlled oscillator (VCO) itself operates as a mixer while generating an oscillation. The two LMVs are complementary coupled and series coupled to generate the quadrature oscillating signals, respectively. Using a 65 nm CMOS technology, the proposed quadrature receivers are designed and simulated. Oscillating at around 2.4 GHz frequency, the complementary coupled quadrature receiver achieves the phase noise of -28 dBc/Hz at 1KHz offset and -109 dBc/Hz at 1 MHz offset frequency. The other series coupled receiver achieves the phase noise of -31 dBc/Hz at 1KHz offset and -109 dBc/Hz at 1 MHz offset frequency. The simulated voltage conversion gain of the two single-balanced receivers is 37 dB and 45 dB, respectively. The double-sideband noise figure of the two receivers is 5.3 dB at 1 MHz offset. The quadrature receivers consume about 440 μW dc power from a 1.0-V supply.

Design of Q-Band LC VCO and Injection Locking Buffer 77 GHz Automotive Radar Sensor (77 GHz 자동차용 레이더 센서 응용을 위한 Q-밴드 LC 전압 제어 발진기와 주입 잠금 버퍼 설계)

  • Choi, Kyu-Jin;Song, Jae-Hoon;Kim, Seong-Kyun;Cui, Chenglin;Nam, Sang-Wook;Kim, Byung-Sung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.3
    • /
    • pp.399-405
    • /
    • 2011
  • In this paper, we present the design of Q-band LC VCO and injection locking buffer for 77 GHz automotive radar sensor using 130 nm RF CMOS process. To improve the phase noise characteristic of LC tank, the transmission line is used. The negative resistance by the active device cross-coupled pair of buffer is used for high output power, with or without oscillation of buffer. The measured phase noise is -102 dBc/Hz at 1 MHz offset frequency and tuning range is 34.53~35.07 GHz. The output power is higher than 4.1 dBm over entire tuning range. The fabricated chip size is $510{\times}130\;um^2$. The power consumption of LC VCO is 10.8 mW and injection locking buffer is 50.4 mW from 1.2 V supply.

MMIC Cascade VCO with Low Phase Noise in InGaP/GaAs HBT Process for Ku-Band Application

  • Shrestha Bhanu;Lee Jae-Young;Lee Jeiyoung;Cheon Sang-Hoon;Kim Nam-Young
    • Journal of electromagnetic engineering and science
    • /
    • v.4 no.4
    • /
    • pp.156-161
    • /
    • 2004
  • The MMIC cascode VCO is designed, fabricated, and measured for Ku-band Low Noise Blcok(LNB) system using InGaP/GaAs HBT technology. The phase noise of -116.4 dBc/Hz at 1 MHz offset with output power of 1.3 dBm is obtained at 11.526 GHz by applying 3 V and 11 mA, which is comparatively better characteristics than compared with the different configuration VCOs fabricated with other technologies. The simulated results of oscillation frequency and second harmonic suppression agree with the measured results. The phase noise is improved due to the use of the smallest value of inductor in frequency determining network and the InGaP ledge function of the technology. The chip size of $830\time781\;{\mu}m^2$ is also achieved.

A Millimeter-Wave LC Cross-Coupled VCO for 60 GHz WP AN Application in a 0.13-μm Si RF CMOS Technology

  • Kim, Nam-Hyung;Lee, Seung-Yong;Rieh, Jae-Sung
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.8 no.4
    • /
    • pp.295-301
    • /
    • 2008
  • Recently, the demand on mm-wave (millimeter-wave) applications has increased dramatically. While circuits operating in the mm-wave frequency band have been traditionally implemented in III-V or SiGe technologies, recent advances in Si MOSFET operation speed enabled mm-wave circuits realized in a Si CMOS technology. In this work, a 58 GHz CMOS LC cross-coupled VCO (Voltage Controlled Oscillator) was fabricated in a $0.13-{\mu}m$ Si RF CMOS technology. In the course of the circuit design, active device models were modified for improved accuracy in the mm-wave range and EM (electromagnetic) simulation was heavily employed for passive device performance predicttion and interconnection parasitic extraction. The measured operating frequency ranged from 56.5 to 58.5 GHz with a tuning voltage swept from 0 to 2.3 V. The minimum phase noise of -96 dBc/Hz at 5 MHz offset was achieved. The output power varied around -20 dBm over the measured tuning range. The circuit drew current (including buffer current) of 10 mA from 1.5 V supply voltage. The FOM (Figure-Of-Merit) was estimated to be -165.5 dBc/Hz.