• Title/Summary/Keyword: LC circuit

Search Result 271, Processing Time 0.028 seconds

A High-Efficiency CMOS Power Amplifier Using 2:2 Output Transformer for 802.11n WLAN Applications

  • Lee, Ockgoo;Ryu, Hyunsik;Baek, Seungjun;Nam, Ilku;Jeong, Minsu;Kim, Bo-Eun
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.2
    • /
    • pp.280-285
    • /
    • 2015
  • A fully integrated high-efficiency linear CMOS power amplifier (PA) is developed for 802.11n WLAN applications using the 65-nm standard CMOS technology. The transformer topology is investigated to obtain a high-efficiency and high-linearity performance. By adopting a 2:2 output transformer, an optimum impedance is provided to the PA core. Besides, a LC harmonic control block is added to reduce the AM-to-AM/AM-to-PM distortions. The CMOS PA produces a saturated power of 26.1 dBm with a peak power-added efficiency (PAE) of 38.2%. The PA is tested using an 802.11n signal, and it satisfies the stringent error vector magnitude (EVM) and mask requirements. It achieves -28-dB EVM at an output power of 18.6 dBm with a PAE of 14.7%.

A Study on the Input Power Factor Correction & THD Reduction of Inverter Airconditioner (인버터 에어컨의 입력 역률 개선 및 하모닉 저감에 관한 연구)

  • Kim, Seong-Hwan;Lee, In-Ho;Yoo, Ji-Yoon;Kim, Tae-Duk;Rae, Young-Dawn;Park, Yoon-Ser
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.235-237
    • /
    • 1995
  • The demands of minimizing the reactive power and reducing. the current harmonics are increasing nowadays. The inverter airconditioner needs high power and it operates with wide load range. Conventionally, ah huge LC passive filter is used in airconditioner to improve the P.F and to reduce current harmonics which doesn't gives good results. In this paper, a design of active power factor correction(PFC) circuit for inverter air conditioner is described. To improve the P.F and to reduce the THD, an average current controlled active PFC is designed and tested. Experimental results show that the developed system achieves almost unity P.F and low THD for all load range.

  • PDF

A High Efficiency MHD Lamp Ballast with a Frequency Controlled Synchronous Rectifier (주파수 가변 동기 정류기를 이용한 고효율 MHD 램프 안정기)

  • Hyun B.C.;Lee I.K.;Cho B.H.
    • Proceedings of the KIPE Conference
    • /
    • 2004.11a
    • /
    • pp.71-75
    • /
    • 2004
  • In this paper, in order to develop a simple and high efficient ballast without an external igniter, a half-bridge type ballast with a coupled inductor and a frequency controlled synchronous rectifier is proposed. The internal LC resonance of the buck converter is used In generate a high voltage pulse for the ignition, and the coupled inductor filter is used for steady state ripple cancellation. Also, a synchronous buck converter is applied for the DC/DC converter stage. In order to improve the efficiency of the ballast, a frequency control method is proposed. This scheme reduces a circulation current and turn off loss of the MOSFET switch on the constant power operation, which results in increase of the efficiency of the ballast system about $4\%$, compared to a fixed frequency control. It consists a 2-stage version ballast with a PFC circuit. The results are verified with hardware experiments.

  • PDF

Implementation of a High-Power-Factor Single-Stage Electronic Ballast for fluorescent lamps (단일전럭단을 갖는 고역율 형광등용 전자식 안정기 구현)

  • 서철식;박재욱;김해준;김동희
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.17 no.1
    • /
    • pp.1-9
    • /
    • 2003
  • In this paper, prototype of high-power-factor single-stage electronic ballast for fluorescent lamp is designed and implemented. A new low cost single stage high power factor electronic ballast for fluorescent lamps is based on integration of two-boost converter and LC type high frequency resonant inverter. The proposed ballast is combined by simple construction, because full bridge rectifier diode is eliminated and simple control circuit is applied. Boost converter operate in the voltage of positive and negative half cycle respectively at line frequency (60㎐), operation in discontinuous conduction mode performs high power factor. The experimental results show the good performance as PF 0.99, THD 15.4%, and CF 1.65 at output 63.5〔W〕.

Design and fabrication of the X-band microwave amplifier for Electronic Radar Reflector (전자식 레이더 반사기를 위한 X-band 마이크로웨이브 증폭기 설계 및 구현)

  • 정종혁;양규식
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.2 no.3
    • /
    • pp.275-282
    • /
    • 1998
  • In this paper, we designed and fabricated 5-stage microwave solid state power amplifier using balanced amplifier scheme for X-band electronic radar reflector. The used substrate is FR4 and the used active devices are FHX35LC, FLK012WF and FLK022WG. The circuit design and optimization had been carried out through the microwave CAD program CNL2 The measured values show 46dB in gain, input return loss -14.2dB, output return loss -16.6dB and IM3 is 32dBc at designed bandwidth. The measured results are almost agreed with the simulated values.

  • PDF

Operating Characteristics Analysis Of Bi-Directional DC/DC Converter using PFM control with high efficiency at whole load range (전 부하 영역에서 고효율을 가지는 PFM 제어를 이용한 양방향 DC/DC 컨버터의 동작특성 분석)

  • Kim, Ji-Hwan;Hwang, Sun-Hee;Ryu, Dong-Gyun;Jung, Doo-Yong;Jung, Yong-Chae;Won, Chung-Yuen
    • Proceedings of the KIPE Conference
    • /
    • 2012.07a
    • /
    • pp.29-30
    • /
    • 2012
  • In this paper, a performance of bi-directional DC/DC converter using PFM control at whole load range is analyzed. A bi-directional DC/DC converter using PFM control in this paper can be soft switching operation with LC series resonant circuit. It's difficult to expect a high efficiency at whole load range in general resonant converter because of limitation of soft switching area. Therefore converter used in this paper has a variable frequency PFM control to overcome a limitation of soft switching area and it makes a high efficiency at whole load range by implementing a soft switching at light load area of restricted soft switching. The high efficiency at whole load range is verified by simulation and experimental result.

  • PDF

High Performance Current Sensing Circuit for Current-Mode DC-DC Buck Converter

  • Jin, Hai-Feng;Piao, Hua-Lan;Cui, Zhi-Yuan;Kim, Nam-Soo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.11 no.1
    • /
    • pp.24-28
    • /
    • 2010
  • A simulation study of a current-mode direct current (DC)-DC buck converter is presented in this paper. The converter, with a fully integrated power module, is implemented by using sense method metal-oxide-semiconductor field-effect transistor (MOSFET) and bipolar complementary metal-oxide-semiconductor (BiCMOS) technology. When the MOSFET is used in a current sensor, the sensed inductor current with an internal ramp signal can be used for feedback control. In addition, the BiCMOS technology is applied in the converter for an accurate current sensing and a low power consumption. The DC-DC converter is designed using the standard $0.35\;{\mu}m$ CMOS process. An off-chip LC filter is designed with an inductance of 1 mH and a capacitance of 12.5 nF. The simulation results show that the error between the sensing signal and the inductor current can be controlled to be within 3%. The characteristics of the error amplification and output ripple are much improved, as compared to converters using conventional CMOS circuits.

Design of a Waveguide Band-Pass Filter Using a Modified H-type Resonant Iris (변형된 H-형 공진 아이리스를 이용한 도파관 대역통과 여파기 설계)

  • Park, Kyoung-Je;Choi, Tae-Ho;Lee, Jong-Ig;Kim, Byung-Mun;Cho, Young-Ki
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.2
    • /
    • pp.347-353
    • /
    • 2018
  • In this paper, we studied a design method for a band-pass waveguide filter with a modified H-type resonant iris (RI) placed in a thin transverse wall of a rectangular waveguide. The horizontal straight gap at the center of a conventional H-shaped iris is modified to a U-shaped one to increase the equivalent capacitance, and the equivalent inductance is improved by changing the vertical two straight slots into C-shaped ones. From some simulation results for the frequency response of the proposed RI, it was observed that the proposed iris was advantageous for reducing its size and having better cutoff, compared to typical H-shaped one. Equivalent inductance, capacitance, and quality factor of the proposed RI were extracted to analyze its performance. A third-order band pass filter using the proposed modified H-shaped iris was designed and, it was observed that the filter operated in the frequency range of 9.18-9.84 GHz with its insertion loss of 0.3 dB and return loss of 14 dB.

A Study on Power Conversion System for Fuel Cell Controlled by Micro-Processor (마이크로프로세서에 의해 제어되는 연료전지용 전력변환장치에 관한 연구)

  • Kim, Ju-Yong;Jung, Sang-Hwa;Mun, Sang-Pil;Ryu, Jae-Yup;Suh, Ki-Young
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.5
    • /
    • pp.10-24
    • /
    • 2007
  • In the dissertation, a power conversion system for fuel cell is composed of a PWM inverter with LC filter in order to convert fuel cell voltage to a single phase 220[V]. In addition, new insulated DC-DC converters are proposed in order that fuel cell voltage is boosted to 380[V]. In this paper, it requires smaller components than existing converters, which makes easy control. The proposed DC-DC converter controls output power by the adjustment of phase-shift width using switch $S_5\;and\;S_6$ in the secondary switch which provides 93-97[%] efficiency in the wide range of output voltage. Fuel cell simulator is implemented to show similar output characteristics to actual fuel cell. Appropriate dead time td enables soft switching to the range where the peak value of excitation current in a high frequency transformer is in accordance with current in the primary circuit. Moreover, appropriate setting to serial inductance La reduces communication loss arisen at light-load generator and serge voltage arisen at a secondary switch and serial diode. Finally, TMS320C31 board and EPLD using PWM switching technique to act a single phase full-bridge inverter which is planed to make alternating current suitable for household

Development of 1.2[kW]Class Fuel Cell Power Conversion System (1.2[kW]급 연료전지용 전력변환장치의 개발)

  • Suh, Ki-Young;Kim, Chil-Ryong;Cho, Man-Chul;Kim, Jung-Do;Yoon, Young-Byun;Kim, Hong-Sin;Park, Do-Hyung;Ha, Sung-Hyun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.6
    • /
    • pp.117-125
    • /
    • 2007
  • Recently, a fuel cell with low voltage and high current output characteristics is remarkable for new generation system. It needs both a DC-DC step-up converter and DC-AC inverter to be used in fuel cell generation system. Therefor, this paper, consists of an isolated DC-DC converter to boost the fuel cell voltage 380[VDC] and a PWM inverter with LC filter to convent the DC voltage to single-phase 220[VAC]. Expressly, The fuel cell system which it proposes DC-DC the efficient converter used PWM the phase transient control law and it depended to portion resonance ZVS switching, loss peek voltage and electric current of realization under make schedule, switching frequency anger and the switch reduction. And mind benevolence it sprouted 2 in stop circuit and it added and a direct current voltage and the electric current where the ingredient is reduced in load side ripple stable under make whom it will be able to supply. Besides the efficiency of 92[%]is obtained over the wide output voltage regulation ranges and load variations. Also, under make over together the result leads simulation and test, the propriety confirmation.