• 제목/요약/키워드: LB30057

검색결과 3건 처리시간 0.016초

LB30057 Inhibits Platelet Aggregation and Vascular Relaxation Induced by Thrombin

  • Jung, Byoung-In;Kang, a-Kyu-Tae;Bae, Ok-Nam;Lee, Moo-Yeol;Chung, Seung-Min;Lee, Sang-Koo;Kim, In-Chul;Chung, Jin-Ho
    • Archives of Pharmacal Research
    • /
    • 제25권6호
    • /
    • pp.879-884
    • /
    • 2002
  • Previous study showed that an amidrazonophenylalanine derivative, LB30057, which has high water solubility, inhibited the catalytic activity of thrombin potently by interaction with the active site of thrombin. In the current investigation, we examined whether LB30057 inhibited platelet aggregation and vascular relaxation induced by thrombin. Treatment with LB30057 to plateletrich plasma (PRP) isolated from human blood resulted in a concentration-dependent inhibition of thrombin-induced aggregation. Values for $IC_{50}$ and $IC_{100}$ were $54{\pm}4$ nM and $96{\pm}3$ nM, respectively. This inhibition was agonist (thrombin) specific, since $IC_{50}$ values for collagen and ADP were \much greater than those for thrombin. In addition, concentration-dependent inhibitory effects were observed on the serotonin secretion induced by thrombin in PRP. Consistent with these findings, thrombin-induced increase in cytosolic calcium levels was inhibited in a concentration-dependent manner. When LB30057 was treated with aortic rings isolated from rats, LB30057 resulted in a concentration-dependent inhibition of thrombin-induced vascular relaxation. All these results suggest that LB30057 is a potent inhibitor of platelet aggregation and blood vessel relaxation induced by thrombin.

LB30057, an Orally Effective Direct Thrombin Inhibitor, Prevents Arterial and Venous Thrombosis in Rats and Dogs

  • Park, Hee-Dong;Kim, Hee-Jin;Oh, Yeong-Soo;Kim, In-Chull;Kim, Yong-Zu;Koh, Hyun-Chul;Shin, In-Chul;Lee, Yong-Hee;Lee, Chang-Ho
    • Archives of Pharmacal Research
    • /
    • 제26권3호
    • /
    • pp.224-231
    • /
    • 2003
  • The anti-thrombotic effects of LB30057, a direct thrombin inhibitor, were evaluated with in vivo rat and dog thrombosis models. In rats, 1 mg/kg of LB30057 inhibited half of the clot formations in the inferior vena cava at 5 minutes after intravenous application. When measured at 2 hours after oral application, 100 mg/kg prevented approximately half of the clot formations in the inferior vena cava and 50 mg/kg prolonged the mean occlusion time from $15.6{\pm}1.3$ minutes to $47.2{\pm}8.3$ minutes in the carotid artery. In dogs, the formation of thrombus in the jugular vein was reduced to half at a dose range of 20-30 mg/kg at 6 hours after oral application. In addition, the LB30057 dosage required to reduce venous clot formation by approximately 80-90% in dogs was only about 10% of that required for the same reduction in rats. This is probably due to the variation in its time-dependent blood concentration profiles in each species; for example, the plasma half-life of LB71350 in dogs was longer than that in rats ($153.0{\pm}3.0$ vs. $129.7{\pm}12.7$ min at 30 mg/kg, i.v., respectively). AUG, $T_{max},{\;}G_{max}$, and BA in dogs were 59, 8.9, 9.17, and 13.3 times higher than those in rats at oral 30 mg/kg, respectively. Taken together, these results suggest that LB30057 administered orally is effective in the prevention of arterial and venous thrombosis in rats and dogs. It therefore represents a good lead compound for investigations to discover a new, orally available, therapeutic agent for treating thrombotic diseases.