• Title/Summary/Keyword: LANDING

Search Result 1,114, Processing Time 0.029 seconds

Vision Processing for Precision Autonomous Landing Approach of an Unmanned Helicopter (무인헬기의 정밀 자동착륙 접근을 위한 영상정보 처리)

  • Kim, Deok-Ryeol;Kim, Do-Myoung;Suk, Jin-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.1
    • /
    • pp.54-60
    • /
    • 2009
  • In this paper, a precision landing approach is implemented based on real-time image processing. A full-scale landmark for automatic landing is used. canny edge detection method is applied to identify the outside quadrilateral while circular hough transform is used for the recognition of inside circle. Position information on the ground landmark is uplinked to the unmanned helicopter via ground control computer in real time so that the unmanned helicopter control the air vehicle for accurate landing approach. Ground test and a couple of flight tests for autonomous landing approach show that the image processing and automatic landing operation system have good performance for the landing approach phase at the altitude of $20m{\sim}1m$ above ground level.

Drop Test Simulation of semi-active Landing Gear using Commercial Magneto-Rheological Damper (상용 MR 댐퍼를 이용한 반능동형 착륙장치 낙하실험)

  • Hwang, Jae-Up;Hwang, Jae-Hyuk;Bae, Jae-Sung;Lim, Kyoung-Ho
    • Journal of Aerospace System Engineering
    • /
    • v.4 no.4
    • /
    • pp.44-48
    • /
    • 2010
  • This paper is used the commercial magneto-rheological(MR) damper for landing gear. The damping characteristics of Commercial MR damper by changing the intensity of the magnetic field are investigated and the dynamic responses of the landing gear. it is set up tset equipment, the landing gear drop test system. The landing gear involved drop testing the gear. The landing gear is tested by implementing sky-hook control algorithm and its performance is evaluated comparing to the result.

  • PDF

Study on Vibration Characteristic Improvement of Aircraft Landing Gear Handle (항공기용 착륙장치 핸들의 진동 특성 개선에 관한 연구)

  • Kang, Gu Heon;Ahn, Jong Moo
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.2
    • /
    • pp.59-65
    • /
    • 2018
  • The landing gear (L/G) handle of an aircraft is an essential piece of equipment for aircraft take-off and landing. The bracket in the landing gear handle was fractured during a vibration test when developing the landing gear handle. This paper summarizes the vibration test procedures performed during landing gear handle development. A cause analysis, design improvements, and verification results of the fault in the vibration test are also provided.

Analysis of landing site for lander and rover on Moon and Mars

  • Seo, Haingja;Kim, Eojin;Kim, Joo Hyeon;Lee, Joo Hee;Choi, Gihyuk;Sim, Eun-Sup
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.105.1-105.1
    • /
    • 2012
  • Moon and Mars have been explored by landers and rovers. Apollo missions landed five times on Lunar surface, and various rovers, including Curiosity landed and explored Mars. The selection of landing site have to be considered engineering and scientific side: the landing site to be available to land stably? the obstacle is not around the rover such as rocks and pothole? the landing site is valuable with scientific? And then landing site have to be the place which is satisfied two objects. We search the information about landing sites of Moon and Mars, and compile the conditions of landing sites. We expect that these data are useful when the landing site of Moon or Mars for Korean mission is selected.

  • PDF

Effects of Cavitation and Drop Characteristics on Oleo-Pneumatic Type Landing Gear Systems (공동현상을 고려한 유공압 방식 착륙장치의 낙하특성에 관한 연구)

  • Han, Jae-Do;Lee, Young-Sin;Kang, Yeon-Sik;Ahn, Oh-Sung;Kong, Jeong-Pyo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.2
    • /
    • pp.193-200
    • /
    • 2009
  • This paper investigated the drop characteristics of oleo pneumatic type landing gear for small aircraft and the effects of cavitations in modeling the landing gear system. The landing gear system employed a simple oleo pneumatic type damper without a metering pin. In general, oleo-pneumatic type landing gears are light-weighted because of it's simplicity, yet they offer excellent impact absorption characteristics. In this study, the landing gear system was modeled using MSC ADAMS, which offers a drop simulation module. After modeling the system, a series of testing was conducted, using a prototype landing gear system, to validate the analysis model and simulation results. The effect of cavitation was considered in the simulation model to obtain a better correlation between the test and simulation results. The results show that adding the cavitation effect in the simulation model significantly improved the simulation model and better captured the dynamic behaviors of the landing system. Using the 'cavitation' model, dynamics characteristics of the landing gear were further evaluated for other landing conditions, such as landing in various angles of slopes.

Injury Prevention Strategies of Landing Motion of Jumping Front Kick to Apply Free Style Poomsae of Taekwondo (태권도 자유 품새에 적용하기 위한 뛰어 앞차기 착지 동작의 상해 예방 전략)

  • Ryu, Sihyun
    • Korean Journal of Applied Biomechanics
    • /
    • v.30 no.1
    • /
    • pp.37-49
    • /
    • 2020
  • Objective: The purpose of this study was to investigate the injury factors of Taekwondo jumping kick during landing phase according to the experience of injury and to suggest a stable landing movement applicable to free style Poomsae. Method: The participants were non-injury group (NG), n = 5, age: 20.5±0.9 years; height: 171.6±3.6 cm; body weight: 65.7±4.4 kg; career: 5.0±2.7 years. Injury group (IG), n = 9, age: 21.0±0.8 years; height: 170.9±4.6 cm; body weight: 67.1±7.0 kg; career: 8.6±5.0 years. The variables are impact force, loading rate, vertical stiffness, lower limb joint angle, stability, balance, and muscle activity in the landing phase. Results: NG was statistically larger than IG in the gluteus medius (p<.05). The impact force, loading rate and vertical stiffness decreased as the landing foot angle, the ROM of lower limb joint angle and COM displacement increased (p<.05). Conclusion: Based on the results, it means that the landing foot angle plays an important role in the impact reduction during landing phase. It is required the training to adjust the landing foot angle.

Development of Failure Mechanism for Rotorcraft Landing Gear (회전익기 착륙장치 파손장치 개발)

  • Shin, Jeong-Woo;Kim, Tae-Uk;Hwang, In-Hee;Jo, Jeong-Jun;Lee, Jeong-Sun;Park, Chong-Yeong
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.497-501
    • /
    • 2008
  • To improve occupants' safety in an emergency, crashworthy design is necessary to rotorcraft design and development. To improve crashworthiness capability, most of the crash energy should be absorbed by rotorcraft and the energy transmitted to the occupants should be minimized. To absorb the crash energy efficiently, the individual energy attenuation provided by landing gear, structure, fuel tank and seats should be considered totally. Especially, landing gear has the important role for crashworthy design because landing gear absorbs relatively large energy for the crash landing. In addition, military specifications require failure of landing gear shall not increase danger to any occupants by penetration of the airframe. To meet the specification requirements, failure mechanism should be prepared so that landing gear is collapsed safely and doesn't penetrate the airframe. In this study, design of failure mechanism which is necessary for the rotorcraft landing gear was performed and the results were presented.

  • PDF

Guidance Laws for Aircraft Automatic Landing (항공기 자동착륙 유도 법칙에 관한 연구)

  • Min, Byoung-Mun;No, Tae-Soo;Song, Ki-Jung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.5
    • /
    • pp.41-47
    • /
    • 2002
  • In this paper, a guidance law applicable to aircraft automatic landing is proposed and its performance is compared with the conventional ILS-type landing approach. The concept of miss distance, which is commonly used in the missile guidance laws, and Lyapunov stability are effectively combined to obtain the landing guidance law. The new landing guidance law is integrated into the existing controller and is applied to the landing approach and flare phases of landing procedure. Numerical simulation results show that the new landing guidance law is a viable alternative to the conventional strategies that directly control the longitudinal deviation or altitude.

Effect of Landing Heights on Muscle Activities and Ground Reaction Force during Drop Landing in Healthy Adults (정상 성인에서 착지 시 착지 높이가 근활성도와 지면반발력에 미치는 영향)

  • Chang, Jong-Sung;Lee, Mi-Young
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.6 no.2
    • /
    • pp.145-151
    • /
    • 2011
  • Purpose: The study was designed to investigate the effects of landing heights on muscle activities and ground reaction force during drop landing. Methods: Sixteen healthy adults were recruited along with their written informed consent. They performed a drop-landing task at the height of 20, 40, and 60cm. They completed three trials in each condition and biomechanical changes were measured. The data collected by each way of landing task and analyzed by One-way ANOVA. Ground reaction forces were measured by force flate, muscle activities measured by MP150 system. Results: There were significant differences in ground reaction forces, and significant increases in muscle activities of tibialis anterior, medial gastrocnemius and biceps femoris with landing heights. Conclusion: These findings revealed that heights of landing increases risk factors of body damage because of biomechanical mechanism and future studies should focus on prevention from damage of external conditions.

Experiments of RTK based Precision Landing for Rotary Wing Drone (RTK를 이용한 회전익 드론 정밀 착륙 실험)

  • Young-Kyu Kim;Jin-Woung Jang;Jong-Hee Lee;Jong-Ho Yoo;Seungh Hyun Paik;Dae-Nyeon Kim
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.18 no.2
    • /
    • pp.75-80
    • /
    • 2023
  • Unmanned drone stations for automatic charging have been developed in order to overcome the flying time limitation of rotary wing drones. Since the drone stations is an unmanned operating system, each of the drones will be required to have a high degree of landing accuracy. Drone precision landing has been mainly studied depended on image processing technologies, but the image processing systems make several problems, such as the mission weight, the drone cost, and the development complexity increases, and the flight time decrease. Thus, this paper researched accuracy of precision landing based on RTK (real time kinetics) for rotary wing drones. For the experiments of RTK based precision landing, a drone repeatedly performed three missions. The survey accuracies of the RTK about missions respectively were set as 0.3, 0.2, and 0.1 meters. Each mission has one take-off point, two way-points and one landing-point, and was repeated ten times. The experiment results revealed landing error distance means of around 0.258, 0.12 and 0.057 meters on each of RTK setting.