• Title/Summary/Keyword: LAM$Si_3N_4$

Search Result 10, Processing Time 0.028 seconds

The Basic Study on Machinability of Ceramics in CO2 Laser Assisted Machining (CO2 레이저 보조가공에 의한 세라믹재료의 가공성에 관한 기초 연구)

  • Kim, Jong-Do;Lee, Su-Jin;Park, Seo-Jeong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.2
    • /
    • pp.322-329
    • /
    • 2009
  • Machinability of LAM(Laser Assisted Machining) has been studied for ceramics such as $Al_2O_3$, $Si_3_N4$ and $ZrO_2$ by $CO_2$ laser. It was possible to remove ceramics by PCBN tool because material became softening and deterioration by local laser beam irradiation. The advantage of LAM is the ability to produce larger material removal rates and tool life. But, for cutting of $Al_2O_3$ and $ZrO_2$, stage of laser power control was needed owing to thermal shock with high temperature of workpiece by laser power. And when $Si_3N_4$ was machined by LAM, $N_2$ gas spouted from surface of one cause of high temperature. Characteristics of LAM were analyzed using pyrometer, dynamometer, SEM and EDS to measure temperature of workpiece surface, cutting force, variation of machining surface and structure of lattice respectively. As the result of this study, it was found that machinability of LAM for ceramics in $CO_2$ laser and mechanism of LAM was different according to the kind of ceramics because of properties of materials.

Characteristics of Si3N4 Laser Assisted Machining according to the Laser Power and Feed Rate

  • Kim, Jong-Do;Lee, Su-Jin;Suh, Jeong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.7
    • /
    • pp.963-970
    • /
    • 2010
  • This study makes an estimate of the laser-assisted machining (LAM) of an economically viable process for manufacturing precision silicon nitride ceramic parts using a high-power diode laser (HPDL). The surface is locally heated by an intense laser source prior to material removal, and the resulting softening and damage of the workpiece surface simplify the machining of the ceramics. The most important advantage of LAM is its ability to produce much better workpiece surface quality compared to conventional machining. Also important are its larger material removal rates and longer tool life. The cutting force and surface temperature were measured on-line using a pyrometer and a dynamometer, respectively. Tool wear, chips and the surface of the workpiece were measured using optical microscopy, and the surface and fractured cross-section of $Si_3N_4$ were measured by SEM. During the LAM process, the cutting force and tool wear were reduced and oxidation of the machined surface was increased according to the increase in the laser power. Moreover, the more the feed rate increased, the more the cutting force and tool wear increased.

Turning of Si3N4 ceramics preheated by Laser (레이저 예열에 의한 $Si_3N_4$ 세라믹스의 선삭가공)

  • Kim, S.W.;Lee, J.H.;Seo, J.;Shin, D.S.
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1493-1498
    • /
    • 2007
  • Silicon Nitride ($Si_3N_4$), which is widely used in a variety of applications, is hard-to-machine due to its high hardness. At high temperature (e.g. above $1000^{\circ}C$), however, the machinability can be greatly improved. In this work, we used a $CO_2$ laser with a high absorptivity to $Si_3N_4$ of 0.9 to preheat the surface of a rothting $Si_3N_4$ rod. Preheating and turning of $Si_3N_4$ was executed at the same time. The result of machining was MRR of $8.0mm^3/s$ that is four times faster than normal grinding. Continuous chip formation was observed by a microscope.

  • PDF

A Study on Laser-Assisted Machining Process of Silicon Nitride (질화규소의 Laser-Assisted Machining 공정에 관한 연구)

  • Lim, Se-Hwan;Lee, Jae-Hoon;Shin, Dong-Sig;Kim, Jong-Do;Kim, Joo-Hyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.5
    • /
    • pp.48-56
    • /
    • 2009
  • In this paper, laser-assisted machining(LAM) has been employed to machine hot isostatically pressed (HIPed) Si3N4 work pieces. Due to little residual flaws and porosity, HIPed $Si_3N_4$ work pieces are more difficult to machine compared to normally sintered $Si_3N_4$ workpieces. In LAM, the intense energy of laser was used to enhance machinability by locally heating the workpiece and thus reducing yield strength. In experiments, the laser power ranges from 200W to 800W and the diameter of work pieces is 16mm. While machining, the surface temperature was kept nearly constant by laser heating except for a short period of rise time of max. 58 seconds. Results showed as feed rate increases the surface temperature of $Si_3N_4$ workpieces decreases slightly, whereas the effect of depth of cut is disregardable. With a laser power of 800W, achievable maximal depth of cut as 0.7mm and feed rate was 0.03mm/rev.

Simulation on Structure of Spiral Inductors for LAM Process Applications (LAM 공정 응용을 위한 나선형 인덕터의 구조에 대한 시뮬레이션)

  • Yun, Eui-Jung;Kim, Jae-Wook;Park, Hyeong-Sik;Lee, Won-Kuk
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1347-1348
    • /
    • 2006
  • 기존 반도체공정들이 갖는 리소그래피와 식각 등의 공정단계를 배제하는 direct-write 공정을 이용하여 친환경적인 이점을 가질 수 있는 나선형 인덕터의 구조를 제안하고 주파수 특성을 확인하였다. 인덕터의 구조는 Si를 $300{\mu}m$, $SiO_2$$3{\mu}m$으로 하였으며, CU 코일의 폭과 선간의 간격은 LAM 공정과 direct-write 공정을 이용할 수 있도록 각각 $100{\mu}m$으로 설정하여 3회 권선하였다. 인덕터는 200-500MHz 범위에서 3.5nH의 인덕턴스, 4GHz에서 최대 29 정도의 품질계수를 가지며, SRF는 2.6GHz로 시뮬레이션 결과를 얻을 수 있었다.

  • PDF

A Study on Laser Assisted Machining for Silicon Nitride Ceramics (IV) - Mechanism and Application of LAM for Silicon Nitride Ceramics - (질화규소 세라믹의 레이저 예열선삭에 관한 연구 (IV) - 질화규소 세라믹의 레이저예열선삭 메커니즘 및 적용 -)

  • Kim, Jong-Do;Lee, Su-Jin;Park, Seo-Jeong;Lee, Jae-Hoon
    • Journal of Welding and Joining
    • /
    • v.28 no.6
    • /
    • pp.40-44
    • /
    • 2010
  • Laser assisted machining (LAM) has been researched in order to machine the silicon nitride ceramics economically and effectively. LAM is an effective machining method by local heating of the cutting part to the softening temperature of the silicon nitride using laser beam. When silicon nitride ceramics is heated using a laser beam, the surface of silicon nitride ceramic is softened, oxidized and decomposed. And then surface hardness is decreased. Through machining in low viscosity and hardness conditions, silicon nitride was machined effectively and the life span of tool was increased. The plastic deformation was occurred due to softening of amorphous YSiAlON above $ 1,000^{\circ}C$. Transgranular fracture of ${\beta}-Si_3N_4$ was occurred when YSiAlON was not softened, but mostly intergranular fracture was occurred by the plastic deformation of softened YSiAlON.

Mechanical Properties of Silicon Nitride Laser-Assisted Machined by Laser Power (레이저 출력에 따른 레이저예열선삭된 질화규소의 기계적 특성)

  • Kim, Jong-Do;Lee, Su-Jin;Shin, Ding-Sig;Suh, Jeong;Lee, Jae-Hoon
    • Laser Solutions
    • /
    • v.12 no.4
    • /
    • pp.12-16
    • /
    • 2009
  • The engineering ceramic is one of the materials advantageous in various conditions with high strength, endurance at high temperature, abrasion resistance and corrosion resistance, etc. However, due to high strength and high brittleness, ceramic incurs high costs and long time on finishing process required after sintering. So a process for obtaining wanted measurements of them has been studied using the high temperature which makes ceramics softened and heat affected recently. This study makes an estimate of laser-assisted machining (LAM) if an economically practical process for manufacturing precision silicon nitride ceramic parts using laser beam. In this study, mechanical properties of silicon nitride at high temperature were observed. And during the LAM, it was observed that cutting force and tool wear were reduced and oxidation of machined surface was increased according to a increase of laser power.

  • PDF

Flora Distributed in Mt. Geumgok, Gyeongju-si, Gyeongsangbuk-do (경상북도 경주시 금곡산에 분포하는 관속식물상)

  • You, Ju Han
    • Korean Journal of Plant Resources
    • /
    • v.26 no.2
    • /
    • pp.248-270
    • /
    • 2013
  • The purpose of this study is to collect the raw data for conservation of plant ecosystem by surveying and analysing the flora of Mt. Geumgok located in Gyeongju-si, Gyeongsangbuk-do, Korea. The flora were summarized as 453 taxa including 91 families, 298 genera, 397 species, 4 subspecies, 46 varieties and 6 forms. The rare plants designated by Korea Forest Service were 3 taxa such as Eranthis byunsanensis B.Y.Sun, Potentilla discolor Bunge and Iris odaesanensis Y.N.Lee. The Korean endemic plants were 6 taxa such as Carpinus laxiflora (Siebold & Zucc.) Blume, Eranthis byunsanensis B.Y.Sun, Philadelphus schrenkii Rupr., Lespedeza maritima Nakai, Vicia chosenensis Ohwi and Weigela subsessilis (Nakai) L.H.Bailey. The specific plants by floristic region were 36 taxa such as Pinus koraiensis Siebold & Zucc., Salix chaenomeloides Kimura, Anemone raddeana Regel, Chloranthus japonicus Siebold, Euphorbia pekinensis Rupr., Ilex macropoda Miq., Ajuga multiflora Bunge, Saussurea odontolepis Sch.Bip. ex Herd, Viola orientalis (Maxim.) W.Becker, Betula davurica Pall., Vitex negundo var. incisa (Lam.) C.B.Clarke and Cimicifuga heracleifolia Kom.. The naturalized plants were 36 taxa such as Fallopia dumetorum (L.) Holub, Lepidium apetalum Willd., Robinia pseudoacacia L., Trifolium repens L., Euphorbia supina Raf., Ipomoea purpurea Roth, Veronica persica Poir., Bidens pilosa L., Carduus crispus L., Xanthium canadense Mill., Bromus unioloides H.B.K. and Festuca arundinacea Schreb.. The invasive alien plants were 2 taxa such as Ambrosia artemisiifolia L. and Aster pilosus Willd.. The ratios of the urbanized index(UI), the naturalized index(NI) and the disturbed index(DI) were 11.2%, 7.9% and 18.2% each.