• Title/Summary/Keyword: LAB Probiotics

Search Result 95, Processing Time 0.034 seconds

Nutritional Functions of Milk and Dairy Products in Improving Human Health

  • Chon, Jung-Whan;Kim, Hyunsook;Kim, Dong-Hyeon;Lee, Soo-Kyung;Kim, Hong-Seok;Yim, Jin-Hyuk;Song, Kwang-Young;Kim, Young-Ji;Kang, Il-Byung;Jeong, Dana;Park, Jin-Hyeong;Jang, Ho-Seok;Seo, Kun-Ho
    • Journal of Dairy Science and Biotechnology
    • /
    • v.34 no.3
    • /
    • pp.145-155
    • /
    • 2016
  • Cow's milk and dairy products are elements of the human diet that could play an important role in improving human health. The macronutrients and micronutrients found in milk could supply the nutrients required to maintain human health. Among them, milk-derived bioactive peptides have been identified as potential ingredients found in health promoting functional foods. These bioactive peptides target diet-related chronic diseases, particularly non-communicable ones such as cardiovascular disease, diabetes and obesity. Additionally probiotics such as lactic acid bacteria (LAB) are can be considered live microorganisms that confer health benefits for the host-, when administered in adequate amounts. Further, the calcium, vitamin D, and protein content of milk and dairy products could play a role in proving bone health. The effect of milk and calcium on bone mineral density could prevent against fracture, osteoporosis and rickets. Furthermore, milk and dairy products also contain which factors that, which protect against dental caries (anti-cariogenic properties). This paper reviews the various nutritional functions of milk and dairy products in improving human health.

Efficiency of a Lactobacillus plantarum-Bacillus subtilis Combination on Growth Performance and Fecal Microflora Populations of Broiler Chickens

  • Cha, Chun-Nam;Lee, Yeo-Eun;Kang, In-Jin;Kim, Suk;Choi, Hyun-Ju;Lee, Hu-Jang
    • Journal of agriculture & life science
    • /
    • v.46 no.5
    • /
    • pp.83-90
    • /
    • 2012
  • A study was investigated the effects of the probiotic mixture (PM) contained Lactobacillus plantarum (L. plantarum) SY-99 $2.4{\times}10^9CFU/kg$ and Bacillus subtilis (B. subtilis) SJ-61 $2.2{\times}10^9CFU/kg$ on growth performance and fecal microflora counts of broiler chickens. Referred to the previous studies, a total of 160 one-day-old male broiler chicken (Ross 308) were randomly assigned to four experimental groups, which were a basal diet alone (control) and supplemented with PM 0.1 g/kg feed (T1), PM 0.2 g/kg feed (T2), and PM 0.4 g/kg feed (T3). After 28 days of administration, the average daily feed intake of T1 and T3 was significantly different compared to that of control (p<0.05). In addition, the feed conversion ratio of T2 and T3 was significantly improved compared to that of control (p<0.05). On the 28th day after administration, all treatment groups were significantly increased fecal lactic acid bacteria (LAB) counts and decreased fecal Enterobacteriaceae (ENT) counts compared to T1 (p<0.05). The results of this study indicated that the combination of L. plantarum and B. subtilis strains in the range of 0.2-0.4 g/kg feed could be used for the improvement of growth performance and fecal microflora in broiler chickens.

Probiotic Characteristics of Lactobacillus brevis KT38-3 Isolated from an Artisanal Tulum Cheese

  • Hacioglu, Seda;Kunduhoglu, Buket
    • Food Science of Animal Resources
    • /
    • v.41 no.6
    • /
    • pp.967-982
    • /
    • 2021
  • Probiotics are living microorganisms that, when administered in adequate amounts, provide a health benefit to the host and are considered safe. Most probiotic strains that are beneficial to human health are included in the "Lactic acid bacteria" (LAB) group. The positive effects of probiotic bacteria on the host's health are species-specific and even strain-specific. Therefore, evaluating the probiotic potential of both wild and novel strains is essential. In this study, the probiotic characteristics of Lactobacillus brevis KT38-3 were determined. The strain identification was achieved by 16S rRNA sequencing. API-ZYM test kits were used to determine the enzymatic capacity of the strain. L. brevis KT38-3 was able to survive in conditions with a broad pH range (pH 2-7), range of bile salts (0.3%-1%) and conditions that simulated gastric juice and intestinal juice. The percentage of autoaggregation (59.4%), coaggregation with E. coli O157:H7 (37.4%) and hydrophobicity were determined to be 51.1%, 47.4%, and 52.7%, respectively. L. brevis KT38-3 produced β-galactosidase enzymes and was able ferment lactose. In addition, this strain was capable of producing antimicrobial peptides against the bacteria tested, including methicillin and/or vancomycin-resistant bacteria. The cell-free supernatants of the strain had high antioxidant activities (DPPH: 54.9% and ABTS: 48.7%). Therefore, considering these many essential in vitro probiotic properties, L. brevis KT38-3 has the potential to be used as a probiotic supplement. Supporting these findings with in vivo experiments to evaluate the potential health benefits will be the subject of our future work.

Optimization of Medium Composition for Biomass Production of Lactobacillus plantarum 200655 Using Response Surface Methodology

  • Choi, Ga-Hyun;Lee, Na-Kyoung;Paik, Hyun-Dong
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.5
    • /
    • pp.717-725
    • /
    • 2021
  • This study aimed to optimize medium composition and culture conditions for enhancing the biomass of Lactobacillus plantarum 200655 using statistical methods. The one-factor-at-a-time (OFAT) method was used to screen the six carbon sources (glucose, sucrose, maltose, fructose, lactose, and galactose) and six nitrogen sources (peptone, tryptone, soytone, yeast extract, beef extract, and malt extract). Based on the OFAT results, six factors were selected for the Plackett-Burman design (PBD) to evaluate whether the variables had significant effects on the biomass. Maltose, yeast extract, and soytone were assessed as critical factors and therefore applied to response surface methodology (RSM). The optimal medium composition by RSM was composed of 31.29 g/l maltose, 30.27 g/l yeast extract, 39.43 g/l soytone, 5 g/l sodium acetate, 2 g/l K2HPO4, 1 g/l Tween 80, 0.1 g/l MgSO4·7H2O, and 0.05 g/l MnSO4·H2O, and the maximum biomass was predicted to be 3.951 g/l. Under the optimized medium, the biomass of L. plantarum 200655 was 3.845 g/l, which was similar to the predicted value and 1.58-fold higher than that of the unoptimized medium (2.429 g/l). Furthermore, the biomass increased to 4.505 g/l under optimized cultivation conditions. For lab-scale bioreactor validation, batch fermentation was conducted with a 5-L bioreactor containing 3.5 L of optimized medium. As a result, the highest yield of biomass (5.866 g/l) was obtained after 18 h of incubation at 30℃, pH 6.5, and 200 rpm. In conclusion, mass production by L. plantarum 200655 could be enhanced to obtain higher yields than that in MRS medium

The impact of probiotics and vitamin C on the prevention of upper respiratory tract symptoms in two preschool children cohorts

  • Zuzana Paduchova;Zuzana Nagyova;Duolao Wang;Jana Muchova
    • Nutrition Research and Practice
    • /
    • v.18 no.1
    • /
    • pp.98-109
    • /
    • 2024
  • BACKGROUND/OBJECTIVES: The efficacy of Lab4 probiotic and vitamin C combination on the prevention of upper respiratory tract infections (URTIs) was investigated in two studies with children. Our objective was to pool dataset of 57 preschool children from the PROCHILD study (ISRCTN28722693) and the dataset of 50 preschool matched cohort from the PROCHILD-2 study (ISRCTN26587549) to evaluate the impact of probiotic/vitamin C combination on the prevention of upper respiratory tract symptoms and provide a more robust assessment of effect using detailed individual level data. SUBJECTS/METHODS: The children were supplemented daily for 6 months with either the multistrain probiotic (1.25×1010 cfu/tablet consisting of two strains of Lactobacillus acidophilus CUL21 and CUL60, Bifidobacterium bifidum CUL20 and Bifidobacterium animalis subsp. lactis CUL34) plus 50 mg vitamin C or a placebo. RESULTS: In the pooled analysis of the individual participant data (per protocol population), significant reductions were observed for the incidence (-25%; 95% confidence interval [CI], 0.66, 0.85; P < 0.0001) and duration (-14.9 days; 95% CI, -24.8, -5.1; P = 0.0030) of typical URTI symptoms in the active group compared with the placebo. The incidence rates of absenteeism from preschool (IR ratio, 0.75; 95% CI, 0.66, 0.86; P < 0.0001), paediatric visits (IR ratio, 0.56; 95% CI, 0.47; 0.68; P < 0.0001) and antibiotic usage (IR ratio, 0.53; 95% CI, 0.39, 0.71; P < 0.0001) were also significantly reduced. CONCLUSION: The pooled analysis findings of comparable preschool cohorts from two studies indicate that the supplementation with probiotic and vitamin C combination is beneficial in the prevention and management of URTI symptoms.

Complete genome sequence of candidate probiotic Limosilactobacillus fermentum KUFM407

  • Bogun Kim;Ji yu Heo;Xiaoyue Xu;Hyunju Lee;Duleepa Pathiraja;Jae-Young Kim;Yi Hyun Choi;In-Geol Choi;Sae Hun Kim
    • Journal of Animal Science and Technology
    • /
    • v.66 no.4
    • /
    • pp.859-862
    • /
    • 2024
  • It has been reported that the administration of Limosilactobacillus fermentum alleviates diseases such as osteoporosis and colitis. In this study, we report the complete genome sequence of Limosilactobacillus fermentum KUFM407, a probiotic strain of LAB isolated from Korean traditional fermented food, Kimchi. Whole genome sequencing of L. fermentum KUFM407 was performed on the Illumina MiSeq and Oxford Nanopore MinION platform. The genome consisted of one circular chromosome (2,077,616 base pair [bp]) with a guanine cytosine (GC) content of 51.5% and one circular plasmid sequence (13,931 bp). Genome annotation identified 1,932 protein-coding genes, 15 rRNAs, and 58 tRNAs in the assembly. The function annotation of the predicted proteins revealed genes involved in the biosynthesis of bacteriocin and fatty acids. The complete genome of L. fermentum KUFM407 could provide valuable information for the development of new probiotic food and health supplements.

[Lactic Acid Bacteria] Probiotic Lactic Acid Bacteria ([유산균] 프로바이오틱 유산균)

  • Ann, Yong-Geun
    • The Korean Journal of Food And Nutrition
    • /
    • v.24 no.4
    • /
    • pp.817-832
    • /
    • 2011
  • It is said that the reason Bulgarians enjoy longevity is that they have a lot of yogurt, whose $Lactobacillus$ controls intestinal poison-producing germs. In young individuals, the number of bifidobacteria exceeds 10 billion per 1 g of intestinal content, but this number decreases for older or senile individuals, who have a larger number of harmful microorganisms such as $Clostridium$. In addition, it is well known that artificially increasing intestinal bifidobacteria can help control harmful microorganisms and thus facilitate a healthier and longer life. The microorganisms used for artificial spawn are referred to as probiotic microorganisms, and in general, lactic acid bacteria(LAB) are used. Unlike antibiotics, which kill harmful microorganisms, probiotic microorganisms coexist with and control them, while improving the health of the individual, that is, they can improve and invigorate host cells. Because probiotic microorganisms and its products based on LAB are known to help prevent and treat constipation, diarrhea, intestinal inflammation, and blood cholesterol and generally improve health through the purification of intestines, its market has been continuously expanding. Korea imports approximately 90% of spawn and uses them. It is likely that they are not appropriate for Korean's physical condition. Thus, considering this problem into account, Entecbio, a biotech firm in Korea, has produced various products by using its proprietary microorganisms. In this paper, the effects, characteristics, and kinds of products from based on proprietary microorganisms, with its prospect for market, etc., are generally examined.

Probiotic Properties and Immunomodulator Evaluation of the Potential Feed Additive Pediococcus acidilactici SRCM102607 (잠재적 사료첨가제로서 Pediococcus acidilactici SRCM102607의 생균제 특성 및 면역활성 효과)

  • Shin, Su-Jin;Ha, Gwangsu;Jeong, Su-Ji;Ryu, Myeong Seon;Kim, Jinwon;Yang, Hee-Jong;Kwak, Mi-Sun;Sung, Moon-Hee;Jeong, Do-Youn
    • Journal of Life Science
    • /
    • v.30 no.10
    • /
    • pp.896-904
    • /
    • 2020
  • The purpose of this study was to investigate the probiotic characteristics and immune activities of selected lactic acid bacterial (LAB) strains as feed additives in livestock. 301 LAB strains isolated from traditional fermented foods were first assessed for their antibacterial activity potential. Of the 301 isolates, five showed antibacterial activity against five livestock pathogens (Esherichia coli KCCM11234, Listeria monocytogens KCTC3710, Salmonella Typhimurium KCTC1926, Staphylococcus aureus KCCM11593, and Shigella flexneri KCTC2517). The probiotic characteristics of the five selected strains were also investigated by antioxidative activity, hemolysis, bile salt hydrolase, acid resistance and bile tolerance. The SRCM102607 strain was found to have superior probiotic properties and was selected for further experimentation. 16S rRNA gene sequencing showed that SRCM102607 is Pediococcus acidilactici, which was labeled as P. acidilactici SRCM102607 (KCCM 12246P). The survival characteristics of P. acidilactici SRCM102607 in artificial gastrointestinal conditions were assessed under exposed acidic (pH 2.0) and bile (0.5% and 1.0%) conditions. P. acidilactici SRCM102607 was also confirmed to have resistance to various antibiotics, including amikacin, gentamicin, vancomycin, and etc. The TNF-α production by P. acidilactici SRCM102607 was 171.86±4.00 ng/ml. These results show that P. acidilactici RCM102607 has excellent potential for use as a probiotic livestock feed additive.

Effects of Probiotic Microbes on Growth Performance, Innate Immunity, and Pathogen Sensitivity in Cultured Olive Flounder (Probiotic 기능을 가진 미생물을 함유한 양어용 생균제가 넙치의 성장, 선천성면역 및 항병능에 미치는 영향)

  • Lee, Ji-Hoon;Chae, Young-Sik;Park, Jung-Jin;Choi, Jun-Ho;Kim, Dong-Gun;Park, Kwan Ha
    • Journal of fish pathology
    • /
    • v.30 no.1
    • /
    • pp.41-49
    • /
    • 2017
  • Probiotic principles can be applied in aquaculture for the purpose of growth and immunity stimulation, disease prevention and eventually better production performance. This study was to assess effects of combinations of microbes containing two Bacillus sp., plus one Lactobacillus sp. as the basal preparation (BSL-LAB), and additional Nitrosomonas sp. (nitrifying bacteria consortium, NBS) in olive flounder (Paralichthys olivaceus). The effects examined were growth parameters, hematologic parameters, innate immunity and pathogen challenge test. Fish were assigned to 4 treatments as Control (no probiotics), Group A (Bacillius and Lactobacillus to culture water), Group B (Bacillius and Lactobacillus both in water and feed), Group C (same as Group B with additional Nitrosomonas in feed). Fish were allocated to the above 4 groups, each group being composed of triplicate 30 fish, for a 7-week feeding in the laboratory. Positive effects were observed both in growth and pathogen sensitivity with all three probiotic combinations. Such effects were attributed to improved innate immune functions. This result indicates that the tested probiotic microbes are beneficial to olive flounder aquaculture.

Evaluation and Determination of Lactase Activity on Various Lactic Acid Bacteria isolated from Kefir by using HPLC

  • Jeong, Dana;Kim, Dong-Hyeon;Chon, Jung-Whan;Kim, Hyunsook;Lee, Soo-Kyung;Kim, Hong-Seok;Song, Kwang-Young;Kang, Il-Byung;Kim, Young-Ji;Park, Jin-Hyeong;Chang, Ho-Seok;Seo, Kun-Ho
    • Journal of Dairy Science and Biotechnology
    • /
    • v.34 no.4
    • /
    • pp.231-237
    • /
    • 2016
  • Kefir is a probiotic food. Probiotics have shown to be beneficial to health, and are currently of great interest to the food industry. Hence, this study was carried out to evaluate the lactase activity of kefir-isolated lactic acid bacteria. Three strains, Lactobacillu kefiri DH5 isolated from the kefir grains and Bifidobacterium animalis subsp. Lactis and Bifidobacteria longum 720, commercial probiotic LAB, were fermented in 10% reconstituted nonfat dry milk suspensions and incubated at $37^{\circ}C$ for 48 h, and then analyzed for various saccarides by HPLC. The results showed that changes in the concentrations of lactose and galactose were significantly decreased and increased, respectively (p<0.05), but all 3 probiotic strains tested in this study showed no increase in glucose concentration during 48 h of incubation. Both DH5 and BL720 showed high lactase activities (p<0.05), whereas BLC exhibited the lowest activity. Additionally, all three lactic acid bacteria showed high tagatose, but did not show high xylose and sedoheptulose. Finally, DH5, a kefir-isolated LAB, may have similar characteristics and properties to typical Bifidobacterium spp. and showed higher lactase activity than commercial Bifidobacterium spp.