• Title/Summary/Keyword: LA-MC-ICPMS

Search Result 4, Processing Time 0.022 seconds

LA-MC-ICPMS U-Pb Ages of the Detrital Zircons from the Baengnyeong Group: Implications of the Dominance of the Mesoproterozoic Zircons (신원생대 백령층군 사암의 쇄설성 저어콘 LA-MC-ICPMS U-Pb 연령: 중원생대 집중연령의 의미)

  • Kim, Myoung Jung;Park, Jeong-Woong;Lee, Tae-Ho;Song, Yong-Sun;Park, Kye-Hun
    • Economic and Environmental Geology
    • /
    • v.49 no.6
    • /
    • pp.433-444
    • /
    • 2016
  • The U-Pb ages of detrital zircons from the Baengnyeong Group were determined by LA-MC-ICPMS, yielding condensed age population in the range from 1100 Ma to 1800 Ma corresponding to the Mesoproterozoic to late Paleoproterozoic. However, detrital zircons of ca.1800-2000 Ma or ca. 2500 Ma ages, which appear frequently in the lower Paleozoic Joseon Supergroup and the upper Paleozoic Pyeongan Supergroup are lacking in the Baengnyeong Group. Such characteristics are identical to those of the Neoproterozoic Sangwon System of North Korea, suggesting that the Baengnyeong Group might be the southwestern extension of the Sangwon System. The zircon age distribution patterns from the Impi Formation in the Gunsan area closely resemble those of the Baengnyeong Group, implying possible correlation of the Impi Formation to the Sangwon System. Therefore, the Mesoproterozoic detrital zircons reported from the Hwangangni Formation of the Okcheon Metamorphic Belt and the Myobong, Sambangsan and Sesong Formations of the Taebaeksan Basin might be derived from the provenances within the Korean peninsula.

Producing of Bronze Artifacts Excavated from Gulsansa Temple Site in Gangneung: Technology and Provenance (강릉 굴산사지에서 출토된 청동기의 제작: 제작기술 및 원료산지)

  • Han, Woo Rim;Kim, So Jin;Lee, Eun Woo;Hwang, Jin Ju
    • Journal of Conservation Science
    • /
    • v.35 no.3
    • /
    • pp.187-196
    • /
    • 2019
  • Bronzes excavated from a Gulsansa temple site in Gangneung were investigated in order to study the production of technology and provenance in this area. The bronze artifacts were discovered to consist of copper-tin or copper-tin-lead alloys using chemical analysis(EDS and EPMA). The excavated bronzes were manufactured using a casting or hammering process, and a bronze belt was gilded with gold foil. The provenance of 25 bronzes was studied using lead isotope analysis(TIMS and LA-MC-ICPMS). The results reveal the use of raw materials found near the excavated site. The object of this study was to investigate the manufacturing techniques and provenance in Gangneung without the need for a lot of data. Our results will contribute to the study of Gulsansa and bronze artifacts in Goryo(12-13th century).

The Late Cretaceous Emplacement Age of Masan Hornblende-Biotite Granite (마산 각섬석-흑운모 화강암의 연령: 후기 백악기 정치연령)

  • Lee, Tae-Ho;Park, Kye-Hun;Kim, Jeongmin;Kim, Myoung Jung
    • The Journal of the Petrological Society of Korea
    • /
    • v.26 no.1
    • /
    • pp.1-11
    • /
    • 2017
  • We have dated the K-Ar, Ar-Ar and U-Pb ages of the Masan hornblende-biotite granite in the southern Cretaceous Gyeongsang basin to constrain its emplacement age. The ~108 Ma hornblende K-Ar age obtained in the study is similar to the previously reported Rb-Sr age. However, the single grain total fusion $^{40}Ar/^{39}Ar$ dating on hornblende failed to yield statistically meaningful ages because the isotopic system was open during its alteration. Thus the hornblende K-Ar age in the study is also unlikely to be reliable. The single grain total fusion $^{40}Ar/^{39}Ar$ dating on biotite yielded an average age of $75.8{\pm}3.0Ma$. Apart from scattered data in the range of ~45-75 Ma, the average age increased to ~80 Ma. The SHRIMP and LA-MC-ICPMS U-Pb isotopic compositions of zircon from the Masan hornblende-biotite granite yielded its emplacement age as $87.6{\pm}2.7Ma$ and $86.8{\pm}0.4Ma$, respectively. It is thus likely that the ~80 Ma $^{40}Ar/^{39}Ar$ age of biotite might reflect the cooling age of Masan hornblende-biotite granite or the thermal influences from later intense igneous activities in the Gyeongsang basin.

Geology and U-Pb Age in the Eastern Part of Yeongdeok-gun, Gyeongsangbuk-do, Korea (경북 영덕군 동부 일원의 지질과 U-Pb 연령)

  • Kang, Hee-Cheol;Cheon, Youngbeom;Ha, Sangmin;Seo, Kyunghan;Kim, Jong-Sun;Shin, Hyeon Cho;Son, Moon
    • The Journal of the Petrological Society of Korea
    • /
    • v.27 no.3
    • /
    • pp.153-171
    • /
    • 2018
  • This study focuses on the investigation of geologic distribution and stratigraphy in the eastern part of Yeongdeok-gun, based on Lidar imaging, detailed field survey, microscopic observations, SHRIMP and LA-MC-ICPMS U-Pb age dating, and a new geological map has been created. The stratigraphy of the study area is composed of the Paleoproterozoic metamorphic rocks consisting of banded gneisses of sedimentary origin and schists ($1841.5{\pm}9.6Ma$) of volcanic origin, Triassic Yeongdeok plutonic rocks ($249.1{\pm}2.3Ma$) and Pinkish granites ($242.4{\pm}2.4Ma$), Jurassic Changpo plutonic rocks ($193.2{\pm}1.9Ma{\sim}188.8{\pm}2.0Ma$) and Fine-grained granites ($192.9{\pm}1.7Ma$), Formations [Gyeongjeongdong Fm, Ullyeonsan Fm. (~108 Ma), Donghwachi Fm.] of the Early Cretaceous Gyeongsang Supergroup and acidic volcanic rocks and dykes erupted and intruded in the Late Cretaceous, Miocene intrusive rhyolitic tuffs ($23.1{\pm}0.2Ma{\sim}22.97{\pm}0.13Ma$) and sedimentary rocks of the Yeonghae basin, and the Quaternary sediments. The Triassic Pinkish granites, Jurassic Changpo plutonic rocks and Fine-grained granites are newly defined plutonic rocks in this study. Miocene intrusive rhyolitic tuffs bounded by the Yangsan Fault, which was first discovered in the north of Pohang city, are believed to play an important role in the understanding of the Miocene volcanic activity and the crustal deformation history on the Korean Peninsula. It is confirmed that The NNE-SSW-striking Yangsan Fault penetrating the central part of the study area and branch faults are predominant in the dextral movement and cutting all strata except the Quaternary sediments.