• Title/Summary/Keyword: L.brevis

Search Result 213, Processing Time 0.025 seconds

Functionality Analysis of Rhus javanica Fermented by Lactobacillus spp. (Lactobacillus spp. 이용 발효 붉나무의 기능성물질 검색에 대한 연구)

  • Lee, Dong-Sung;Kang, Min-Su;Kim, Youn-Chul;Im, Nam-Kyung;Kim, Hyun-Su;Jeong, Gil-Saeng
    • Journal of Life Science
    • /
    • v.23 no.1
    • /
    • pp.44-54
    • /
    • 2013
  • To determine the potential function of Rhus javanica in Korean medicine, it was fermented with each strain of Lactobacillus spp. Each strain of Lactobacillus spp. was inoculated in lactobacilli MRS broth, and 5 mg/ml of methanol extract of Rhus javanica was added. In mouse hippocampal HT22 cells, ethyl acetate extract of R. javanica fermented with L. brevis KCTC 3498 induced heme oxygenase-1 expression and showed a significant cytoprotective effect on glutamate-induced oxidative damage. The cytoprotective effect was related to the transcription of the nuclear factor E2-related factor2 (Nrf2), which is responsible for the induction of heme oxygenase-1 within the nucleus. The antimicrobial, antioxidant, and heme oxygenase-1 expression activities of fermented R. javanica were measured after extraction with ethyl acetate. R. javanica fermented with L. plantarum subsp. plantarum KCTC 3108, L. fermentum KCTC 3112, and L. brevis KCTC 3498 had higher antioxidant activity than nonfermented R. javanica. The fermented R. javanica with L. plantarum subsp. plantarum KCTC 3108, L. casei KCTC 3109 after ethyl acetate extraction showed antibacterial activity against Bacillus subtilis PCI 219, Escherichia coli KCTC 1682, Shigella flexneri KCTC 2517, Vibrio parahaemolyticus KCTC 7471, and Pseudomonas aeruginosa KCTC 2004. An ethyl acetate extract of the fermented R. javanica with Lactobacillus brevis KCTC 3498 exhibited stronger antibacterial activity than a nonfermented one against strains of B. subtilis PCI 219, E. coli KCTC 1682, S. flexneri KCTC 2517, and V. parahaemolyticus KCTC 7471.

Monitoring the 2007 Florida east coast Karenia brevis (Dinophyceae) red tide and neurotoxic shellfish poisoning (NSP) event

  • Wolny, Jennifer L.;Scott, Paula S.;Tustison, Jacob;Brooks, Christopher R.
    • ALGAE
    • /
    • v.30 no.1
    • /
    • pp.49-58
    • /
    • 2015
  • In September 2007, reports of respiratory irritation and fish kills were received by the Florida Fish and Wildlife Conservation Commission (FWC) from the Jacksonville, Florida area. Water samples collected in this area indicated a bloom of Karenia brevis, the dinoflagellate that produces brevetoxin, which can cause neurotoxic shellfish poisoning. For the next four months, K. brevis was found along approximately 400 km of coastal and Intracoastal waterways from Jacksonville to Jupiter Inlet. This event represents the longest and most extensive red tide the east coast of Florida has experienced and the first time Karenia species other than K. brevis have been reported in this area. This extensive red tide influenced commercial and recreational shellfish harvesting activities along Florida's east coast. Fourteen shellfish harvesting areas (SHAs) were monitored weekly during this event and 10 SHAs were closed for an average of 53 days due to this red tide. The length of SHA closure was dependent on the shellfish species present. Interagency cooperation in monitoring this K. brevis bloom was successful in mitigating any human health impacts. Kernel density estimation was used to create geographic extent maps to help extrapolate discreet sample data points into $5km^2$ radius values for better visualization of the bloom.

A Non-yeast Kefir-like Fermented Milk Development with Lactobacillus acidophilus KCNU and Lactobacillus brevis Bmb6

  • Lee, Bomee;Yong, Cheng-Chung;Yi, Hae-Chang;Kim, Saehun;Oh, Sejong
    • Food Science of Animal Resources
    • /
    • v.40 no.4
    • /
    • pp.541-550
    • /
    • 2020
  • The use of yeast assist kefir fermentation, but also can cause food spoilage if uncontrolled. Hence, in this study, the microbial composition of an existing commercial kefir starter was modified to produce a functional starter, where Lactobacillus acidophilus KCNU and Lactobacillus brevis Bmb6 were used to replace yeast in the original starter to produce non-yeast kefir-like fermented milk. The functional starter containing L. acidophilus KCNU and L. brevis Bmb6 demonstrated excellent stability with 1010 CFU/g of total viable cells throughout the 12 weeks low-temperature storage. The newly developed functional starter also displayed a similar fermentation efficacy as the yeast-containing control starter, by completing the milk fermentation within 12 h, with a comparable total number of viable cells (108 CFU/mL) in the final products, as in control. Sensory evaluation revealed that the functional starter-fermented milk highly resembled the flavor of the control kefir, with enhanced sourness. Furthermore, oral administration of functional starter-fermented milk significantly improved the disease activity index score by preventing drastic weight-loss and further deterioration of disease symptoms in DSS-induced mice. Altogether, L. acidophilus KCNU and L. brevis Bmb6 have successfully replaced yeast in a commercial starter pack to produce a kefir-like fermented milk beverage with additional health benefits. The outcome of this study provides an insight that the specific role of yeast in the fermentation process could be replaced with suitable probiotic candidates.

미생물 생육에 대한 무 추출물의 억제 및 촉진 효과

  • 곽희진;계수경
    • Journal of Applied Tourism Food and Beverage Management and Research
    • /
    • v.11
    • /
    • pp.29-42
    • /
    • 2000
  • Extracts active on the growth of food-born microorganisms were prepared from radish by using acetone, methanol and water as the solvents. Strains of bacteria and yeast, such as L. brevis, L. fermentum, L. faecalis, L. mesenteroides, B. subtilis, S. flexneri, S. aureus and C. albicans. Addition of 1 $m\ell$ of acetone extract exhibited the strongest growth effect on L. brevis. The water extracts turned out to stimulate growth of all Lactic acid bacteria. Especially, it was observed that the same material produced the highest stimulatory effect(by about 40-50 times) on L. faecalis and L. fermentum and L. mesenteroides. Also, it was proved to have a weak stimulate effect on C. albicans, S. flexneri and S. aureus. But, on the contrary to this, when applied to B. subtilis it showed growth stimulation by about 10 times.

In vitro Antioxidative Properties of Lactobacilli

  • Kim, H.S.;Chae, H.S.;Jeong, S.G.;Ham, J.S.;Im, S.K.;Ahn, C.N.;Lee, J.M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.2
    • /
    • pp.262-265
    • /
    • 2006
  • The antioxidative properties of lactobacilli originating from humans (Lactobacillus acidophilus KCTC 3111, Lactobacillus jonsonii KCTC 3141, Lactobacillus acidophilus KCTC 3151, and Lactobacillus brevis KCTC 3498) were investigated using in vitro methods, including inhibition of lipid peroxidation, resistance to hydrogen peroxide and hydroxyl radical, hydroxyl radical scavenging activity, and glutathione peroxidase (GPX) activity. L. acidophilus KCTC 3111 showed the highest inhibition of lipid peroxidation in both intact cells (49.7%) and cell lysate (65.2%). This strain exhibited resistance to hydrogen peroxide and hydroxyl radical, which was viable for 7 h in the concentration of 1.0 mM hydrogen peroxide. In addition, this strain showed high hydroxyl radical scavenging activity. In the GPX activity assay, the highest activity was measured in L. brevis 3498. GPX activity of L acidophilus 3111 was lower than that of L. brevis 3498.

Effects of Lactic Acid Bacteria Inoculant on Fermentation Quality and in vitro Rumen Fermentation of Total Mixed Ration

  • Choi, Yeon Jae;Lee, Sang Suk
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.39 no.3
    • /
    • pp.132-140
    • /
    • 2019
  • Fermented total mixed ration (TMR) is a novel feed for ruminants in South Korea. The purpose of this study was to evaluate the effects of lactic acid bacteria (LAB) on the quality of TMR and in vitro ruminal fermentation. Strains of three LAB spp. (Lactobacillus plantarum, L. brevis, L. mucosae) were used in fermentation of TMR. Inoculations with the three LAB spp. lowered pH and increased concentrations of lactic acid, acetic acid, and total organic acid compared to non-LAB inoculated control (only addition of an equivalent amount of water) (p<0.05). Bacterial composition indicated that aerobic bacteria and LAB were higher. However, E. coli were lower in the fermented TMR than those in the control treatment (p<0.05). Among the treatments, L. brevis treatment had the highest concentration of total organic acid without fungus detection. Gas production, pH, and ammonia-nitrogen during ruminal in vitro incubation did not differ throughout incubation. However, ruminal total VFA concentration was higher (p<0.05) in the LAB spp. treatments than the control treatment at 48 hours. Overall, the use of L. brevis as an inoculant for fermentation of high moisture. TMR could inhibit fungi growth and promote lactic fermentation, and enhance digestion in the rumen.

Study on Development of Fermented Sausage using Grapefruit Extract and Kimchi Extracted Starter Culture (자몽 추출물과 김치 추출 유산균을 이용한 발효 소시지 개발에 관한 연구)

  • Kim, Yonghui;Ahn, Byong-Suk
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.24 no.1
    • /
    • pp.70-79
    • /
    • 2014
  • This study was conducted to develop natural additive for the improvement of lipid stability and the suppression of pathogenic contamination during the storage periods of fermented sausage. Fermented sausage prepared with grapefruit extract showed good suppression of lipid oxidation and pathogenic bacterial growth, and it was higher than that of fermented sausage prepared with nitrate until 7 days of storage. Fermented sausage prepared with treatment A (sodium nitrate and L. acidophilus), B (sodium nitrate and L. brevis), C (ascorbic acid and L. brevis) and D (grapefruit extract and L. brevis) were compared. As results, treatment C and D showed the lowest pH changes among treatments, and the highest growth of lactic acid bacteria was represented in treatment D. In the suppression effect of E. coli, the bacterial count was below 100 in all treatment except the treatment A. There were no differences among treatment in the brightness of meat color (p<0.05). Treatment D showed significantly high values in the redness, but showed the lowest values in the yellowness. In sensory and texture test, treatment C and D were superior compared to others. Therefore, grapefruit was represented as a good source of antioxidant for fermented sausage, and L. brevis isolated from kimchi was effect in lowering pH value of sausage during fermentation and it was also effective to persist fermentation during storage period and to reduce the occurrence of pathogenic bacteria by the suppression of their growth.

Physiological Characteristics and Angiotensin Converting Enzyme Inhibitory Activity of Lactobacillus brevis HLJ59 Isolated from Salted Shrimp (국내 새우젓에서 분리한 Lactobacillus brevis HLJ59의 Angiotensin Converting Enzyme 저해활성 및 생리적 특성)

  • Jeon, Chun-Pyo;Kim, Yun-Hoi;Lee, Jung-Bok;Jo, Min-Sub;Shin, Kee-Sun;Choi, Chung-Sig;Kwon, Gi-Seok
    • Korean Journal of Microbiology
    • /
    • v.46 no.1
    • /
    • pp.9-14
    • /
    • 2010
  • In this study, lactic acid bacteria with high angiotensin converting enzyme inhibitor activity were isolated from Korean fermented food, such as kimchi and salted seafood. The strain HLJ59, isolated from salted shrimp showed the highest angiotensin converting enzyme inhibitor activity in DeMan Rogosa Sharpe broth. Optimum growth temperature of Lactobacillus brevis HLJ59 was at $34^{\circ}C$. Acid treatment at pH 3.0 for 1.5 h decreased cell viability from $9.9{\times}10^8$ CFU/ml to $3.11{\times}10^4$ CFU/ml. The bile extract concentration of 0.3%, 0.5%, and 1.0% in MRS broth did not inhibit the growth of HLJ59. Isolated strain HLJ59 showed more sensibility to amikacin, gentamycin, neomycin, streptomycin, kanamycin, cefmetazole, cephalothin, ampicillin, ticarcillin, sulbactam+ampicillin, amoxicillin+clavulanic acid (AMC), tetracycline, and sulfamethoxazole+trime thoprim (SXT) as compare to other 7 different antibiotics. However, it showed more resistance to cefoxatin, ceftnaxone, penicillin, ciprofloxacin, nalidixic acid, lincomycin, and chloramphenicol.

Conversion of Ginsenoside Rd to Compound K by Crude Enzymes Extracted from Lactobacillus brevis LH8 (Lactobacillus brevis LH8이 생산하는 효소에 의한 Ginsenoside Rd의 Compound K로의 전환)

  • Quan, Lin-Hu;Liang, Zhiqi;Kim, Ho-Bin;Kim, Se-Hwa;Kim, Se-Young;Noh, Yeong-Deok;Yang, Deok-Chun
    • Journal of Ginseng Research
    • /
    • v.32 no.3
    • /
    • pp.226-231
    • /
    • 2008
  • Ginsenosides have been regarded as the principal components responsible for the pharmacological and biological activities of ginseng. Absorption of major ginsenosides from the gastrointestinal tract is extremely low, when ginseng is orally administered. In order to improve absorption and its bioavailability, conversion of major ginsenosides into more active minor ginsenoside is very much required. Here, we isolated lactic acid bacterium (Lactobacillus brevis LH8) having ${\beta}-glucosidase$ activity from Kimchi. Bioconversion ginsenoside Rd by this bacterium in different temperatures was investigated. The maximum activities of crude enzymes precipitated by ethanol were shown in $30^{\circ}C$ and then gradually decreased. In order to compare the effect of pH, the crude enzymes of L. brevis LH8 were mixed in 20mM sodium phosphate buffer (pH 3.5 to pH 8.0) and reacted ginsenoside Rd. Ginsenoside Rd was almost hydrolyzed between pH 6.0 and pH 12.0, but not hydrolyzed under pH 5.0 and above pH 13.0. Ginsenoside Rd was hydrolyzed after 48 h incubation, whereas ginsenoside F2 appeared from 48 h to 72 h, and ginsenoside Rd was almost converted into compound K after 72 h.

Change in Lactobacillus brevis GS1022 and Pediococcus inopinatus GS316 in Gajami Sikhae Fermentation (가자미 식해 발효에서 Lactobacillus brevis GS1022과 Pediococcus inopinatus GS316의 균총 변화 연구)

  • Lim, Soo-Jeong;Bae, Eun-Yeong;Seol, Min-Kyeong;Cho, Young-je;Jung, Hee-Young;Kim, Byung-Oh
    • Journal of Life Science
    • /
    • v.30 no.6
    • /
    • pp.491-500
    • /
    • 2020
  • Lactic acid bacteria are widely known to prevent and treat intestinal health conditions, heart disease, depression, and obesity. In Korea, such bacteria are commonly consumed through various fermented foods, although most are isolated from kimchi, and research on the lactic acid bacteria in fermented seafood is insufficient. This study was therefore conducted to observe changes in bacterial flora according to the culture date of lactic acid bacteria in the fermentation of traditional Korean Gajami Sikhae produced in Pohang and to isolate the bacteria of probiotic value. The bacteria were periodically isolated and identified from date of preparation to 50 days after preparation to investigate which Lactobacillus are involved in Gajami Sikhae. As fermentation progressed, it was confirmed that Pediococcus sp. and Lactobacillus sp. participate predominantly in the early and later periods of fermentation, respectively. During the entire fermentation period, 170 isolates were screened, and the following five species were found to be involved: Pediococcus pentosaceus, Pediococcus inopinatus, Leuconostoc mesenteroides, Lactobacillus brevis, and Lactobacillus plantarum. Five strains of these species were selected through acid and bile tolerance tests, and their coaggregation, autoaggregation, hydrophobicity, antibacterial, and antioxidant activities were then evaluated. As a result, it is thought that L. brevis GS1022, which has excellent digestive fluid resistance, and P. inopinatus GS316, which has excellent cohesiveness, may be useful as probiotic strains.