• Title/Summary/Keyword: L-type stiffener

Search Result 4, Processing Time 0.019 seconds

Fabrication and Evaluation of Composite Panel with L-shaped Stiffeners (L-형 보강재를 가진 복합재 패널의 제작과 평가)

  • Yun, Jong-Hwa;Choi, Jin-Ho;Kweon, Jin-Hwe
    • Composites Research
    • /
    • v.26 no.2
    • /
    • pp.99-104
    • /
    • 2013
  • The design of composite joint is important research area because they are often the weakest areas in composite structures. In this paper, the specimens with three paste thickness (0.2 mm, 0.6 mm, 4 mm) were manufactured in secondary bonding method and tested in two different loading direction condition. Also, the failure index of the L-type stiffener was calculated by the finite element method and compared with experimental results.

Retardation Effect on the Breach of the Earth Filled Embankment Using the Stiffener During Overtopping (흙댐 제체의 보강재 설치에 따른 월류붕괴 지연효과)

  • Joo, Yo Han;Yeo, Chang-Geon;Lee, Seung Oh
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.4
    • /
    • pp.1377-1387
    • /
    • 2013
  • Most embankment of the reservoirs (99.1 %) have been constructed in the earth filled type in Korea because the construction of this type is less expensive and simpler than others such as concrete one. However, it has to be reinforced the slope to prevent the breach due to overtopping or piping under unexpected flood conditions. This study has been analyzed the retardation effect using three types (L, T, $L^*$ shape) of stiffener in order to reinforce embankment when they are collapsed by overtopping flow. Experimental results showed that L-type stiffener is the most effective in delaying the breaching of embankment and reducing the soil erosion when compared with others. The reinforced embankment breaching showed that time delay was occurred about 1.73 to 2.29 times and the peak flowrate was reduced compared to non-stiffener embankments due to energy dissipation by collision and less soil erosion. The embankment breaching mostly leads to major damages because of the lack of repair time. Thus, since these stiffeners can resist the rapid breach, it would be possible to earn the time to emergency repair and lifesaving, as well as reduction of damages of embankment in downward region with decreasing peak flowrate. Results from this study would be used for the basis when establishing the emergency action plan for the reservoirs on the verge of hazard.

A Study on the Guidelines on the Insertion of Metal Stiffeners in the Restoration of Stone Cultural Heritages (석조문화재 복원을 위한 금속보강재 매입방법 표준화 연구)

  • Lee, Dong-sik;Kim, Hyun-yong;Kim, Sa-dug;Hong, Seong-geol
    • Korean Journal of Heritage: History & Science
    • /
    • v.46 no.3
    • /
    • pp.212-228
    • /
    • 2013
  • Stone cultural heritages are repaired by the use of metal stiffeners. The problem is that this type of repair has been based on the experience of workers without specific guidelines and has caused various problems. This is to suggest the structural reinforcement and behavioral characteristics of metal rods to minimize the secondary damage of materials and have the specimens tested and verified to establish the guidelines on how to insert metal stiffeners. When only epoxy resin is applied to the cut surface, only 70% of the properties of the parent material are regenerated and it is required to structurally reinforce the metal stiffener for the remaining 30%. The metal rod is under the structural behavior after the brittle failure of stone material and the structural behavior does not occur when the metal stiffener is below 0.251%. When it accounts for over 0.5%, it achieves structural reinforcement, but causes secondary damage of parent materials. The appropriate ratio of metal stiffener for the stone material with the strength of $1,500kgf/cm^2$, therefore, should be between 0.283% and 0.377% of the cross section of attached surface to achieve reversible fracture and ductility behavior. In addition, it is more effective to position the stiffeners at close intervals to achieve the peak stress of metal rod against bending load and inserting the stiffener into the upper secions is not structurally supportive, but would rather cause damage of the parent material. Thus, most stiffeners should be inserted into the lower part and some into the central part to work as a stable tensile material under the load stress. The dispersion effect of metal rods was influenced by the area of reinforcing rods and unrelated to their diameter. However, it ensures stability under the load stress to increase the number of stiffeners considering the cross section adhered when working on large-scale structures. The development length is engineered based upon the diameter of stiffener using the following formula: $l_d=\frac{a_tf_y}{u{\Sigma}_0}$. Also, helically-threaded reinforcing rods should be used to perform the behaviors as a structural material.

Minimum Weight Design of Built-up T Based on HCSR (HCSR 기반 T형 조립부재의 최소중량설계)

  • Shin, Sang-Hoon;Ko, Dae-Eun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.6
    • /
    • pp.389-394
    • /
    • 2017
  • In a conventional ship structure, stiffeners with an asymmetric section, such as inverted angles, are used widely despite the disadvantage of strength compared to the stiffeners with a symmetric section, such as a built-up T. On the other hand, T-type built-up members are attracting more attention than L-type inverted angles due to the increased size of ships. The purpose of this study was to develop an optimal design program for a built-up T, and apply an evolution strategy as an optimization technique. In the optimization process, the gross thickness concept was adopted for the design variables and objective function, and the constraints are set up based on HCSR (Harmonized Common Structural Rules). Using the developed program in this study, the optimal stiffener design was carried out for 300K VLCC and 158K COT of which the orders were obtained lately. The optimal results revealed the weight reduction effect of 144 tons and 60 tons, respectively.