• Title/Summary/Keyword: L-type $Ca^{2+}$ channel

Search Result 91, Processing Time 0.026 seconds

Mechanisms for the Initiation of Sperm Motility (정자운동 개시 기구)

  • Kho Kang Hee;Kang Kyoung Ho;Chang Young Jin
    • Development and Reproduction
    • /
    • v.7 no.2
    • /
    • pp.81-88
    • /
    • 2003
  • Initiation and activation of sperm motility are prerequisite processes for the contact and fusion of male and female gametes at fertilization. The phenomena are under the regulation of CAMP and $Ca^{2+}$ in vertebrates and invertebrates. Mammalian sperm requires $Ca^{2+}$and cyclic AMP for the activation of sperm motility. Cell signaling for the initiation and activation of sperm motility has been well studied in the ascidians, Ciona intestinalis and C. savignyi and salmonid fishes. In Ciona, whose cell signaling for activation of sperm motility has been established, the sperm-activating and -attracting factor released from unfertilized egg requires extracellular $Ca^{2+}$ for activating sperm motility and eliciting chemotactic behavior of the activated sperm toward the egg. On the other hand, the cyclic AMP-dependent phosphorylation of protein is essential for the initiation of sperm motility in salmonid fishes. A decrease in the environmental Ti concentration surrounding the spawned sperm causes a li efflux and $Ca^{2+}$ influx through the specific $K^{+}$ channel and dihydropyridine-sensitive L-/T- type $Ca^{2+}$ channel, respectively, thereby leading to the membrane hyperpolarization and $Ca^{2+}$ influx. The membrane hyperpolarization synthesizes cyclic AMP, which triggers the luther Process of cell signaling, i.e., cyclic AMP-dependent protein phosphorylation, to initiate sperm motility in salmond fishes.almond fishes.

  • PDF

Role of $Ca^{2+}$ and Calmodulin on the Initiation of Sperm Motility in Salmonid Fishes

  • Kho, Kang-Hee;Morisawa, Masaaki;Choi, Kap-Seong
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.3
    • /
    • pp.456-465
    • /
    • 2004
  • $K^+$ efflux through a certain type of $K^+$ channels causes the change of membrane potential and leads to cAMP synthesis in the transmembrane cell signaling for the initiation of sperm motility in the salmonid fishes. The addition of $Ca^{2+}$ conferred motility to the trout sperm that were immobilized by external $K^+$ and other alkaline metals, $Rb^+$ and $Cs^{2+}$, suggesting the participation of external $Ca^{2+}$ in the initiation of sperm motility. L-type $Ca^{2+}$ channel blockers such as nifedipine, nimodipine, and FS-2 inhibited the motility, but N-type $Ca^{2+}$ channel blocker, w-conotoxin MvIIA, did not. On the other hand, the membrane hyperpolarization and cAMP synthesis were suppressed by $Ca^{2+}$ channel blockers, nifedipine, and trifluoroperazine. Furthermore, these suppressions were relieved by the addition of $K^+$ ionophore, valinomycin. Inhibitors of calmodulin, such as W-7, trifluoperazine, and calrnidazol-C1, inhibited the sperm motility, membrane hyperpolarization, and cAMP synthesis. The results suggest that $Ca^{2+}$ influx through $Ca^{2+}$ channels that are sensitive to specific $Ca^{2+}$ channel blockers and calmodulin participate in the changes of membrane potential, leading to synthesis of cAMP in the cell signaling for the initiation of trout sperm motility.

Influence of Cilnidipine on Catecholamine Release Evoked by Cholinergic Stimulation and Membrane Depolarization in the Perfused Rat Adrenal Gland

  • Lim, Dong-Yoon;Woo, Seong-Chang;Ko, Suk-Tai
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2001.11a
    • /
    • pp.95-95
    • /
    • 2001
  • Ciinidipine (FRC-8635) is a newly synthesized novel DHP type of organic Ca$\_$2+/channel blockers that have been developed so far in Japan (Yoshimoto et al., 1991 : Hosono et at., 1992). It also has a blocking action on L-type voltage-dependent Ca$\^$2+/channel (VDCCs) in the rabbit basilar artery (Oike et al., 1990) and a slow-onset and long-lasting hypotensive action in clinical and experimental studies (Ikeda et al., 1992 ; Tominaga et al., 1997). Recent electrophysiological data indicate that cilnidipine might be a dual-channel antagonist for peripheral neuronal N-type and vascular L-type Ca$\^$2+/channels (Oike et al., 1990 ; Fujii et al., 1997; Uneyama et at., 1997). However, little is known about the involvement of N-type VDCCs in contributing to the muscarinic receptor-mediated CA secretion. Therefore, the present study was attempted to investigate the effect of cilinidipine on secretion of catecholamines (CA) evoked by ACh, high K$\^$+/, DMPP and McN-A-343 from the isolated perfused rat adrenal gland. Cilnidipine (1-10 ${\mu}$M) perfused into an adrenal vein for 60 min produced dose- and time-dependent inhibition in CA secretory responses evoked by ACh (5.32${\times}$10$\^$-3/M), DMPP (10$\^$-4/ M for 2 min) and McN-A-343 (10$\^$-4/ M for 2 min). However, lower dose of lobeline did not affect CA secretion by high K$\^$+/(5.6${\times}$10$\^$-2/ M), higher dose of it reduced greatly CA secretion of high K$\^$+/. Cilnidipine itself did also fail to affect basal catecholamine output. Furthermore, in adrenal glands loaded with cilnidipine (10 ${\mu}$M), CA secretory response evoked by Bay-K-8644 (10 ${\mu}$M), an activator of L-type Ca$\^$2+/channels was markedly inhibited while CA secretion by cyclopiazonic acid (10 ${\mu}$M), an inhibitor of cytoplasmic Ca$\^$2+/-ATPase was no affected. Moreover, $\omega$-conotoxin GVIA (1 ${\mu}$M), given into the adrenal gland for 60 min, also inhibited time-dependently CA secretory responses evoked by ACh and high K$\^$+/.

  • PDF

Vasodilation of Ethanol Extract of Cinnamomi Ramulus via Voltage Dependent $Ca^{2+}$ Channel Blockage (전압의존성 $Ca^{2+}$ 통로 억제를 통한 계지(桂枝) 에탄올 추출물의 혈관이완 효능)

  • Kim, Jong-Bong;Shin, Heung-Mook
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.24 no.4
    • /
    • pp.592-597
    • /
    • 2010
  • Cinnamomi Ramulus is one of the medicinal plants that have been used to improve various diseases caused by insufficient blood circulation. This study was performed for the investigation of vasodilation efficacy ethanol extract of Cinnamomi Ramulus (CR). CR exhibited vascular relaxation against phenylephrine (PE, $10^{-6}M$)-, KCl- and NaF-induced contraction in rat thoracic aorta. In addition, its relaxation was endothelium-independent. Treatment of potassium channel blockers such as gilbenclamide (Gli, $10^{-5}M$), tetraethylammonium (TEA, 1 mM) and 4-aminopyridine (4-AP, 0.2 mM) did not effect on the relaxation of CR. The relaxant effects were also not inhibited by pre-treatment of rat aorta with L-NAME ($10^{-4}M$), methylene blue ($10^{-5}M$), indomethacin ($10^{-5}M$), and atropine ($10^{-6}M$). However, nifedipine ($10^{-5}M$), L-type $Ca^{2+}$ channel blocker, in part attenuated the relaxation of CR ($0.2\;mg/m{\ell}$), but SK&F96365 ($3{\times}10^{-5}M$), receptor activated $Ca^{2+}$ channel blocker and 2-APB ($10^{-4}M$), store operated $Ca^{2+}$ channel blocker did not affact dilation of CR. These findings suggest that the endothelium-independent relaxation effect of CR is partly related with inhibition of $Ca^{2+}$ influx via voltage dependent $Ca^{2+}$ channel.

A Computational Model of Cytosolic and Mitochondrial [$Ca^{2+}$] in Paced Rat Ventricular Myocytes

  • Youm, Jae-Boum;Choi, Seong-Woo;Jang, Chang-Han;Kim, Hyoung-Kyu;Leem, Chae-Hun;Kim, Na-Ri;Han, Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.15 no.4
    • /
    • pp.217-239
    • /
    • 2011
  • We carried out a series of experiment demonstrating the role of mitochondria in the cytosolic and mitochondrial $Ca^{2+}$ transients and compared the results with those from computer simulation. In rat ventricular myocytes, increasing the rate of stimulation (1~3 Hz) made both the diastolic and systolic [$Ca^{2+}]$ bigger in mitochondria as well as in cytosol. As L-type $Ca^{2+}$ channel has key influence on the amplitude of $Ca^{2+}$ -induced $Ca^{2+}$ release, the relation between stimulus frequency and the amplitude of $Ca^{2+}$ transients was examined under the low density (1/10 of control) of L-type $Ca^{2+}$ channel in model simulation, where the relation was reversed. In experiment, block of $Ca^{2+}$ uniporter on mitochondrial inner membrane significantly reduced the amplitude of mitochondrial $Ca^{2+}$ transients, while it failed to affect the cytosolic $Ca^{2+}$ transients. In computer simulation, the amplitude of cytosolic $Ca^{2+}$ transients was not affected by removal of $Ca^{2+}$ uniporter. The application of carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone (FCCP) known as a protonophore on mitochondrial membrane to rat ventricular myocytes gradually increased the diastolic [$Ca^{2+}$] in cytosol and eventually abolished the $Ca^{2+}$ transients, which was similarly reproduced in computer simulation. The model study suggests that the relative contribution of L-type $Ca^{2+}$ channel to total transsarcolemmal $Ca^{2+}$ flux could determine whether the cytosolic $Ca^{2+}$ transients become bigger or smaller with higher stimulus frequency. The present study also suggests that cytosolic $Ca^{2+}$ affects mitochondrial $Ca^{2+}$ in a beat-to-beat manner, however, removal of $Ca^{2+}$ influx mechanism into mitochondria does not affect the amplitude of cytosolic $Ca^{2+}$ transients.

Nitric Oxide Synthase Mediates Carbon Monoxide-Induced Stimulation of L-type Calcium Currents in Human Jejunal Smooth Muscle Cells

  • Lim, In-Ja;Yun, Ji-Hyun;Kim, Seung-Tae;Myung, Soon-Chul;Kim, Tae-Ho;Bang, Hyo-Weon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.8 no.3
    • /
    • pp.161-165
    • /
    • 2004
  • Exogenous carbon monoxide (0.2%) increases L-type calcium $(Ca^{2+})$ current in human jejunal circular smooth muscle cells. The stimulatory effect of carbon monoxide (CO) on L-type $Ca^{2+}$ current is inhibited by pre-application of L-NNA, a classical competitive inhibitor of nitric oxide synthase (NOS) with no significant isoform selectivity (Lim, 2003). In the present study, we investigated which isoform of NOS affected CO induced stimulation of L-type $Ca^{2+}$ current in human jejunal circular smooth muscle cells. Cells were voltage clamped by whole-cell mode patch clamp technique, and membrane currents were recorded with 10 mM barium as the charge carrier. Before the addition of CO, cells were pretreated with each inhibitor of three NOS isoforms for 15 minutes. CO-stimulating effect on L-type $Ca^{2+}$ current was partially blocked by N-(3-(Amino-methyl) benzyl) acetamidine 2HCl (1400W, an iNOS inhibitor). On the other hand, 3-bromo-7-nitroindazole (BNI, a nNOS inhibitor) or $N^5-(1-Iminoethyl)-L-ornithine$ dihydrochloride (L-NIO, an eNOS inhibitor) completely blocked the CO effect. These data suggest that low dose of exogenous CO may stimulate all NOS isoforms to increase L-type $Ca^{2+}$ channel through nitric oxide (NO) pathway in human jejunal circular smooth muscle cells.

Cardiovascular Effects of Gentamicin Administration in Rats (흰쥐에서 Gentamicin 투여가 심혈관계에 미치는 영향)

  • 김상진;강형섭;백삼권;박상열;김인식;김남수;김진상
    • Journal of Veterinary Clinics
    • /
    • v.21 no.3
    • /
    • pp.291-297
    • /
    • 2004
  • Aminoglycosidic antibiotics have multiple effects on muscle. For example, they have been shown to block L-type $Ca^{2+}$ channels in vascular smooth muscle, cardiac muscle and skeletal muscle. Possibly as a consequence of this effect on $Ca^{2+}$ influx, they have been shown to decrease the contractility of cardiac muscle (gentamicin). The present study evaluated the effects of gentamicin on blood pressure, vasorelaxation and left ventricular pressure. Gentamicin(10, 20, 40mg/kg) produced dose-dependent blood pressure lowering in rat. The pretreatment of MgSO$_4$ and imipramine (Na$^{+}$-Mg$^{2+}$ exchange inhibitor) had no effect in gentamicin-induced hypotension. However, the gentamicin-induced hypotension was significantly potentiated in the preincubation of verapamil or nifedipine (L-type $Ca^{2+}$ channel blockers), and was significantly attenuated by CaCl$_2$ and was slightly attenuated by caffeine (phosphodiesterase inhibitor). Gentamicin (10, 30, 100$\mu$g/m1) did not have an effect on relaxation of phenylephrine-precontracted aortic rings but high concentration of gentamicin(100, 300$\mu$g/ml) relaxed KCl-precontracted aortic rings, which relaxation was potentiated by treatment of nifedipine. Whereas gentamicin markedly decreased left ventricular developed pressure (LVDP) in perfused heart. These data suggest that gentamicin has significant blood pressure lowering of the rat, which seems to be mediated by calcium channel-sensitive pathway and blood $Ca^{2+}$ level may be important role in this response.

Effects of Glibenclamide on $Na^+-K^+$ Pump and L-type $Ca^{2+}$ Channel in Guinea-pig Ventricular Myocytes

  • Lee, So-Young;Lee, Chin O.
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 2003.06a
    • /
    • pp.81-81
    • /
    • 2003
  • Glibenclamide, a sulfonylurea derivative, has been used in tile treatment of type II diabetes mellitus. Recent studies provided evidence that glibenclamide, in addition to blocking ATP-sensitive $K^{+}$ channels, also affected Na$^{+}$-K$^{+}$ pumps and L-type $Ca^{2+}$ channels in noncardiac cells. The effect of glibenclamide on the cardiac muscle is not clearly known. In the present study, the effects of glibenclamide on intracellular Na$^{+}$ concentration ([Na$^{+}$]$_{i}$ ), twitch tension, $Ca^{2+}$ transient, and membrane potential were investigated in isolated guinea-pig ventricular myocytes. Glibenclamide at concentration of 200 $\mu$M increased [Na$^{+}$]$_{i}$ by 3.9$\pm$0.4 mM (mean $\pm$ SE, n=12), decreased twitch tension by 36.1 $\pm$ 4.0% (mean $\pm$ SE, n=8), reduced $Ca^{2+}$ transient by 24.4$\pm$5.1% (mean $\pm$ SE, n=3), slightly depolarized diastolic membrane potential, and did not change action potential duration. To determine whether inhibitions of Na$^{+}$-K$^{+}$ pumps and L-type $Ca^{2+}$ channels are responsible for the increase of [Na$^{+}$]$_{i}$ and the decrease of twitch tension, we tested effects of glibenclamide on Na$^{+}$-K$^{+}$ pump current and L-type $Ca^{2+}$ current. Glibenclamide decreased Na$^{+}$-K$^{+}$ pump current and L-type $Ca^{2+}$ current in a concentration-dependent manner.t in a concentration-dependent manner.

  • PDF

Extracellular Zinc Modulates Cloned T-type Calcium Channels

  • Lee, Jung-Ha;Park, Byong-Gon;Park, Jin-Yong;Lee, Joong-Woo;Jeong, Seong-Woo
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 2002.06b
    • /
    • pp.36-36
    • /
    • 2002
  • In the present study, we investigated effects of extracellular zinc (Zn$\^$2+/) on T-type Ca$\^$2+/ channel isoforms (${\alpha}$lG, ${\alpha}$lH, and ${\alpha}$lI) stably expressed in HEK 293 cells. Ca$\^$2+/ currents were measured using 10 mM Ca$\^$2+/ as a charge carrier under whole cell-ruptured patch configuration. Zn$\^$2+/ blocked the ${\alpha}$lH currents with a 100- and 200-fold higher potency (IC$\sub$50/ = 2.5 ${\mu}$M) when compared with those for blockade of the ${\alpha}$1G and ${\alpha}$1I currents, respectively.(omitted)

  • PDF

Role of Calcium and Calcium Channels in Progesterone Induced Acrosome Reaction in Caprine Spermatozoa

  • Somanath, P.R.;Gandhi, K.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.7
    • /
    • pp.949-956
    • /
    • 2002
  • There are several physiological and pharmacological evidences indicating that opening of voltage dependent $Ca^{2+}$ channels play a critical role in induction of acrosome reaction in mammalian sperm. We determined the intracellular free $Ca^{2+}$ concentration in ejaculated goat sperm using a fluorescent, $Ca^{2+}$-specific probe, Fura2/AM, after the suspension of sperm in KRB medium, capable of sustaining capacitation and the acrosome reaction. We used nifedipine, D-600 and diltiazem, the $Ca^{2+}$ channel antagonists belonging to the classes of dihydropyridines, phenylalkylamines and benzothiazepines, to investigate the possibility that L-type voltage gated $Ca^{2+}$ channels play a role in the progesterone-stimulated exocytotic response. Progesterone promoted a rise in intracellular $Ca^{2+}$ in goat sperm and addition of nifedipine (100 nM) just prior to progesterone induction, significantly inhibited both intracellular $Ca^{2+}$ rise and exocytosis suggesting that $Ca^{2+}$ channels are involved in the process. However, the intracellular $Ca^{2+}$ increase during the process of capacitation was not affected with the addition of nifedipine suggesting a role of focal channel for $Ca^{2+}$ during capacitation. Studies using monensin and nigericin, two monovalent cation ionophores showed that an influx of $Na^+$ also may play a role in the opening of $Ca^{2+}$ channels. These results strongly suggests that the entry of $Ca^{2+}$ channels with characteristics similar to those of L-type, voltage-sensitive $Ca^{2+}$ channels found in cardiac and skeletal muscle, is a crucial step in the sequence of events leading to progesterone induced acrosome reaction in goat sperm.