• Title/Summary/Keyword: L-threo-DOPS

Search Result 2, Processing Time 0.017 seconds

Synthesis of L-threo-2,3-Dihydroxyphenylserine (L-threo-DOPS) by Thermostable L-Threonine Aldolase Expressed in Corynebacterium glutamicum R (Corynebacterium glutamicum에서 발현된 L-Threonine Aldolase를 이용한 파킨슨병 치료제 L-threo-2,3-Dihydroxyphenylserine (L-threo-DOPS)의 합성)

  • Baik, Sang-Ho
    • Microbiology and Biotechnology Letters
    • /
    • v.36 no.2
    • /
    • pp.128-134
    • /
    • 2008
  • In order to examine efficient L-threo-2,3-Dihydroxyphenylserine (L-threo-DOPS) synthesis process using whole cell biocatalyst, a thermostable L-threonine aldolase (L-TA), which cloned from Streptomyces coelicolor A3(2) and improved for stability, was expressed in a Corynebacterium glutamicum R strain. The constructed Corynebacterium expression vector, pCG-H44(1) successfully expressed L-TA in C. glutamicum R strain, but showed very low expression level. In order to improve the expression level, the expression vector named pCG-H44(2) was reconstructed by eliminating 1 nucleotide between SD sequence and start codon of L-TA. The pCG-H44(2) vector plasmid was able to overexpress L-TA approximately 3.2 times higher than pCG-H44(1) in C. glutamicum R strain (CGH-2). When the whole cell of CGH-2 was examined in a repeated batch system, L-threo-DOPS was successfully synthesized with a yield of 4.0 mg/ml and maintain synthesis rate constantly after 30 repeated batch reactions for 130 h.

Synthesis of L-threo-3,4-Dihydroxyphenylserine(L-threo-DOPS) with Thermostabilized Low-Specific L-Threonine Aldolase from Streptomyces coelicolor A3(2)

  • Baik, Sang-Ho;Yoshioka, Hideki;Yukawa, Hideaki;Harayama, Shigeaki
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.5
    • /
    • pp.721-727
    • /
    • 2007
  • Stability-enhanced mutants, H44, 11-94, 5A2-84, and F8, of L-threonine aldolase(L-TA) from Streptomyces coelicolor A3(2)(SCO1085) were isolated by an error-prone PCR followed by a high-throughput screening. Each of these mutant, had a single amino acid substitution: H177Y in the H44 mutant, A169T in the 11-94 mutant, D104N in the 5A2-84 mutant and F18I in the F8 mutant. The residual L-TA activity of the wild-type L-TA after a heat treatment for 20 min at $60^{\circ}C$ was only 10.6%. However, those in the stability-enhanced mutants were 85.7% for the H44 mutant, 58.6% for the F8 mutant, 62.1% for the 5A2-84 mutant, and 67.6% for the 11-94 mutant. Although the half-life of the wild-type L-TA at $63^{\circ}C$ was 1.3 min, those of the mutant L-TAs were longer: 14.6 min for the H44 mutant, 3.7 min for the 11-94 mutant, 5.8 min for the 5A2-84 mutant, and 5.0 min for the F8 mutant. The specific activity did not change in most of the mutants, but it was decreased by 45% in the case of mutant F8. When the aldol condensation of glycine and 3,4-dihydroxybenzaldehyde was studied by using whole cells of Escherichia coli containing the wild-type L-TA gene, L-threo-3,4-dihydroxyphenylserine(L-threo-DOPS) was successfully synthesized with a yield of 2.0 mg/ml after 20 repeated batch reactions for 100 h. However, the L-threo-DOPS synthesizing activity of the enzyme decreased with increased cycles of the batch reactions. Compared with the wild-type L-TA, H44 L-TA kept its L-threo-DOPS synthesizing activity almost constant during the 20 repeated batch reactions for 100 h, yielding 4.0 mg/ml of L-threo-DOPS. This result showed that H44 L-TA is more effective than the wild-type L-TA for the mass production of L-threo-DOPS.