• 제목/요약/키워드: L-shaped frame system

검색결과 4건 처리시간 0.015초

Effect of Plan Irregularity and Beam Discontinuity on Structural Performances of Buildings under Lateral Loadings

  • Islam, Md. Rajibul;Chakraborty, Sudipta;Kim, Dookie
    • Architectural research
    • /
    • 제24권2호
    • /
    • pp.53-61
    • /
    • 2022
  • Irregularities in the structure are crucial factors in screening structural vulnerability under extreme loadings. Numerical analyses were carried out considering wind and seismic loadings for four structures with discrete irregularity: continuous and discontinuous beams with varied story levels, and L-shaped irregular buildings. Structural responses such as maximum displacements, bending moments, axial forces, torsions, and story drifts are evaluated as per the criteria and limits defined by ACI 318. The outcomes indicate that the frame system with beam discontinuity on the upper half of the height exhibits the best structural performance. The results also indicate that the asymmetrical design of the L-shaped model makes it more susceptible to damage when subjected to strong lateral loading conditions.

Experimental study on seismic behavior of frame structures composed of concrete encased columns with L-shaped steel section and steel beams

  • Zeng, Lei;Ren, Wenting;Zou, Zhengtao;Chen, Yiguang;Xie, Wei;Li, Xianjie
    • Earthquakes and Structures
    • /
    • 제16권1호
    • /
    • pp.97-107
    • /
    • 2019
  • The frame structures investigated in this paper is composed of Concrete encased columns with L-shaped steel section and steel beams. The seismic behavior of this structural system is studied through experimental and numerical studies. A 2-bay, 3-story and 1/3 scaled frame specimen is tested under constant axial loading and cyclic lateral loading applied on the column top. The load-displacement hysteretic loops, ductility, energy dissipation, stiffness and strength degradation are investigated. A typical failure mode is observed in the test, and the experimental results show that this type of framed structure exhibit a high strength with good ductility and energy dissipation capacity. Furthermore, finite element analysis software Perform-3D was conducted to simulate the behavior of the frame. The calculating results agreed with the test ones well. Further analysis is conducted to investigate the effects of parameters including concrete strength, column axial compressive force and steel ratio on the seismic performance indexes, such as the elastic stiffness, the maximum strength, the ductility coefficient, the strength and stiffness degradation, and the equivalent viscous damping ratio. It can be concluded that with the axial compression ratio increasing, the load carrying capacity and ductility decreased. The load carrying capacity and ductility increased when increasing the steel ratio. Increasing the concrete grade can improve the ultimate bearing capacity of the structure, but the ductility of structure decreases slightly.

Vision-based support in the characterization of superelastic U-shaped SMA elements

  • Casciati, F.;Casciati, S.;Colnaghi, A.;Faravelli, L.;Rosadini, L.;Zhu, S.
    • Smart Structures and Systems
    • /
    • 제24권5호
    • /
    • pp.641-648
    • /
    • 2019
  • The authors investigate the feasibility of applying a vision-based displacement-measurement technique in the characterization of a SMA damper recently introduced in the literature. The experimental campaign tests a steel frame on a uni-axial shaking table driven by sinusoidal signals in the frequency range from 1Hz to 5Hz. Three different cameras are used to collect the images, namely an industrial camera and two commercial smartphones. The achieved results are compared. The camera showing the better performance is then used to test the same frame after its base isolation. U-shaped, shape-memory-alloy (SMA) elements are installed as dampers at the isolation level. The accelerations of the shaking table and those of the frame basement are measured by accelerometers. A system of markers is glued on these system components, as well as along the U-shaped elements serving as dampers. The different phases of the test are discussed, in the attempt to obtain as much possible information on the behavior of the SMA elements. Several tests were carried out until the thinner U-shaped element went to failure.

회전 효과를 고려한 Active Gurney Flap 의 동특성 해석 (Dynamic Characteristic Analysis of Active Gurney Flap Considering Rotational Effect)

  • 기영중;김태주;김덕관
    • 대한기계학회논문집 C: 기술과 교육
    • /
    • 제3권3호
    • /
    • pp.183-191
    • /
    • 2015
  • 본 논문에서는 헬리콥터 로터 시스템의 진동과 소음을 저감시키기 위해 개발이 진행 중인 능동거니플랩(AGF, Active Gurney Flap)에 대해 유한요소법을 이용하여 수행된 동특성 해석결과를 소개하였다. 거니플랩은 평판의 형태로 블레이드 하부 표면에 수직인 방향으로 전개되며, 블레이드 뒷전(T/E, Trailing Edge) 부위에 장착된다. 거니플랩 조립체는 전기모터와 L-형 링키지 및 플랩 등의 부품들로 구성되어 블레이드 내부에 장착되며, 고정프레임에서의 진동 성분들을 감소시키기 위해 3~5/rev 범위로 능동적인 제어가 필요하다. 따라서 외연적 시간적분법을 통해 로터 회전에 의한 원심력과 제어입력이 적용되고 있는 상황에서 거니플랩의 동적 응답특성을 분석하였으며, 해석 결과를 통해 거니플랩의 하향변위 요구도를 만족시킬 수 있음을 확인하였다.