• Title/Summary/Keyword: L-particles

Search Result 935, Processing Time 0.031 seconds

Fabrication of Macro-porous Carbon Foams from Spherical Phenolic Resin Powder and Furfuryl Alcohol by Casting Molding (구상 페놀수지 분말과 푸르프릴 알코올로부터 주형성형에 의한 매크로 다공성 카본 폼의 제조)

  • Jeong, Hyeondeok;Kim, Seiki
    • Journal of Powder Materials
    • /
    • v.26 no.6
    • /
    • pp.502-507
    • /
    • 2019
  • Macro-porous carbon foams are fabricated using cured spherical phenolic resin particles as a matrix and furfuryl alcohol as a binder through a simple casting molding. Different sizes of the phenolic resin particles from 100-450 ㎛ are used to control the pore size and structure. Ethylene glycol is additionally added as a pore-forming agent and oxalic acid is used as an initiator for polymerization of furfuryl alcohol. The polymerization is performed in two steps; at 80℃ and 200℃ in an ambient atmosphere. The carbonization of the cured body is performed under Nitrogen gas flow (0.8 L/min) at 800℃ for 1 h. Shrinkage rate and residual carbon content are measured by size and weight change after carbonization. The pore structures are observed by both electron and optical microscope and compared with the porosity results achieved by the Archimedes method. The porosity is similar regardless of the size of the phenolic resin particles. On the other hand, the pore size increases in proportion to the phenol resin size, which indicates that the pore structure can be controlled by changing the raw material particle size.

Size Control of Bismuth Nanoparticles by Changes in Carrier-Gas Flow Rate and Chamber Pressure of Gas Condensation Apparatus (가스응축장치 캐리어가스 공급속도 및 압력변화를 통한 비스무스 나노분말 입도제어)

  • Lee, Gyoung-Ja;Kim, Chang-Kyu;Lee, Min-Ku;Rhee, Chang-Kyu
    • Journal of Powder Materials
    • /
    • v.17 no.5
    • /
    • pp.379-384
    • /
    • 2010
  • In the present work, bismuth nanopowders with various particle size distributions were synthesized by controlling argon (Ar) gas flow rate and chamber pressure of a gas condensation (GC) apparatus. From the analyses of transmission electron microscopy (TEM) images and nitrogen gas adsorption results, it was found that as Ar gas flow rate increased, the specific surface area of bismuth increased and the average particles size decreased. On the other hand, as the chamber pressure increased, the specific surface area of bismuth decreased and the average particles size increased. The optimum gas flow rate and chamber pressure for the maximized electrochemical active surface area were determined to be 8 L/min and 50 torr, respectively. The bismuth nanopowders synthesized at the above condition exhibit 13.47 $m^2g^{-1}$ of specific surface area and 45.6 nm of average particles diameter.

Particle Scavenging Properties of Rain Clarified by a Complementary Study with Bulk and Semi-bulk Samples

  • Ma, Chang-Jin;Kang, Gong-Unn
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.34 no.1
    • /
    • pp.177-186
    • /
    • 2018
  • It is a well-known fact that precipitation plays an important role in capturing ambient particles, however, the details of particle scavenging properties have not been fully proved. To clarify the particle scavenging properties, a complementary study was carried out with the bulk and semi-bulk rain samples collected in an urban city of Japan. pH showed a continued downturn for a little bit at the beginning rainfall and then a turn-up in the following rainfall. The recorded pH values of rainwater (ranged from 3.5-4.6) demonstrated that the strong acid rain was observed during our field measurements. Compared to the subsequent rainfall, electrical conductivity in the beginning rainfall had about 1.3 times higher level. Sulfur showed an overwhelmingly high concentration compared to other elements in both ambient total suspended particles (TSP) and rain samples. On the contrary to ambient TSP, every element including Ca and Zn in rain showed a continued rise in concentration accompanied by increasing of rainfall amount. During the first period of the rainfall there was no meaningful change in elemental carbon concentration, however, it was largely increased (up to $0.2mg\;L^{-1}$) in the sequential rainfall (4.0-4.5 mm rainfall amount). The theoretically calculated number concentration of particles scavenged by raindrops showed a strong decrease of with the increasing droplet diameter regardless of particle type.

Numerical analysis of fluid flow and thermal fields in the vertical fluidized bed heat exchanger (수직형 순환유동층 열교환기에서의 유체유동과 온도장의 수치해석)

  • Lee, B.C.;Kang, H.K.;Lee, M.S.;Ahn, S.W.
    • Journal of Power System Engineering
    • /
    • v.16 no.4
    • /
    • pp.24-29
    • /
    • 2012
  • The numerical analysis by using CFX 11.0 commercial code was done for prediction of fluid flow and thermal field in the vertical heat exchanger. The present experimental studies were also conducted to investigate the effects of circulating solid particles on the fluid flow and temperatures in the fluidized bed vertical shell and tube type heat exchanger with counterflow, at which the solid particles of glasses (3 $mm{\Phi}$) were used in the fluidized bed with a smooth tube. The effect of circulation on the distance(L) of tube inlet and baffle plate was also examined. The present experimental and numerical results showed that the particles in the distance (Ds) of 15 mm showed a more efficient circulation without stacked the space and the LMTD(Log Mean Temperature Difference) in the fluidized bed type was much lower than that in the typical type shell and tube heat exchanger.

Assessment of Characteristics of Biofilm Formed on Autotrophic Denitrification

  • JANG AM;BUM MINSU;KIM SUNGYOUN;AHN YEONGHEE;KIM IN S;BISHOP PAUL L
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.3
    • /
    • pp.455-460
    • /
    • 2005
  • A pilot-scale sulfur particle autotrophic denitrification (SPAD) process for the treatment of municipal wastewater was operated for 10 months at Shihwa, Korea, and higher than $90\%\;NO^{-}_{3}-N$ removal efficiency was observed. Plate counting showed that the lower part of the denitrifying column reactor had the most autotrophic denitrifiers. The biofilm thickness formed on sulfur particles from the SPAD reactor was approximately $25-30\;{\mu}m$, measured by DAPI (4,6-diamidino-2-phenylindole) staining. The presence of bacteria inside the highly porous sulfur particle was also monitored by SEM observation of the internal surfaces of broken sulfur particles. Biofilm extracellular polymeric substances (EPS) analysis showed that the ratio of carbohydrate to protein decreased with the reactor heights at which biofilm-formed sulfur particles were obtained.

Antiasthmatic Effects on Scutellaria baicalensis Georgi Extracts Against Airway Inflammation and Hyperresponsiveness Induced by Diesel Exhaust Particles with Ovalbumin Sensitization (Ovalbumin과 디젤배기가스 입자로 유도된 기도염증과 기도 과민성에 대한 황금 추출물의 항천식 효과)

  • Lim, Heung-Bin;Kim, Seung-Hyung
    • Korean Journal of Medicinal Crop Science
    • /
    • v.20 no.2
    • /
    • pp.129-135
    • /
    • 2012
  • The feature of asthma are airway inflammation (AI), reversible airway obstruction, and an increased sensitivity to bronchoconstricting agents, elevated airway hyperresponsiveness (AHR), excess production of Th2 cytokines, and eosinophil accumulation in the lungs. This study was performed to investigate if oral administration of $Scutellaria$ $baicalensis$ Georgi water extracts (SBG) have the antiasthmatic potential for the treatment of asthma. Asthmatic HI and AHR were induced by systemic sensitization to ovalbumin (OVA) with intratracheal instillation with 0.1 mg/mL of diesel exhaust particles (DEP) suspension once a week for 10 weeks in BALB/c mice. SBG was orally administered with the concentraion of 200 mg/kg 5 days a week for 10 weeks. Long-term SBG treatment suppressed the eosinophil infiltration into airways from blood, the asthmatic AI and AHR by attenuating the production of cytokine IL-4, IL-5 and IL-13, histamine and OVA-specific IgE. Our data suggest that SBG has inhibitory effects on AI and AHR in a mouse model of asthma, may act as a potential Th2 cytokine antagonist, and may have a therapeutic effect on allergic asthma.

A Study on the Environmental Fraternized Preparation of Inorganic/organic Core-shell Binder (환경친화적인 무기/유기 Core-Shell의 제조에 관한 연구)

  • Seoul, Soo-Duk;Lim, Jae-Keel;Lim, Jong-Min;Kwon, Jae-Beom;Lee, Nae-Woo
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.1
    • /
    • pp.81-87
    • /
    • 2004
  • Composite particles using inorganic and organic chemicals were synthesized and the results of those reaction were compared to variation of temperature and agitation speed in presence of $CaCO_3$ which was adsorbed SDBS. Also the synthesises were optimized according to conversion rate of composite particles. In inorganic/organic core-shell composite particle polymerization, $CaCO_3$ adsorbed by 0.5wt% surfactant SDBS was prepared initially and then core $CaCO_3$ was encapsulated by sequential emulsion polymerization using MMA at the addition of APS 3.16${\times}$$10^{-3}$mol/L to minimize the coagulated PMMA particle itself during MMA shell polymerization. Encapsulated PMMA on $CaCO_3$ as inorganic/organic core-shell particles was verified by FT-IR and DSC analysis. It was found that the $CaCO_3$ was very well encapsulated by PMMA as shell. The surfaces were distinctly found as spindle shape and broad particle distribution after capsulation.

Theory of Nanoparticles Mechanosynthesis

  • Urakaev, Farit Kh.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.405-406
    • /
    • 2005
  • A theoretical investigation of the solid-phase mechanochemical synthesis of nano-sized target product on the basis of dilution of the initial powdered reagent mixture by another product of an exchange reaction is presented. On the basis of the proposed 3-mode particle size distribution in mechanically activated mixture, optimal molar ratios of the components in mixture are calculated, providing the occurrence of impact-friction contacts of reagent particles and excluding aggregation of the nanosized particles of the target reaction product. Derivation of kinetic equations for mechanochemical synthesis of nanoscale particles by the final product dilution method in the systems of exchange reactions is submitted. On the basis of obtained equations the necessary times of mechanical activation for complete course of mechanochemical reactions are designed. Kinetics of solid phase mechanosynthesis of nano-TlCl by dilution of initial (2NaCl + $Tl_2SO_4$) mixture with the exchange reaction product (diluent, $zNa_2SO_4$, $z=z^*=11.25$) was studied experimentally. Some peculiar features of the reaction mechanism were found. Parameters of the kinetic curve of nano-TlCl obtained experimentally were compared with those for the model reaction KBr + TlCl + zKCl = (z + 1) KCl + TlBr ($z=z_l^*=13.5$), and for the first time the value of mass transfer coefficient in a mechanochemical reactor with mobile milling balls was evaluated. Dynamics of the size change was followed for nanoparticle reaction product as a function of mechanical activation time.

  • PDF

Effect of Pre-Treatment of Pig Slurry for Methane Production in Anaerobic Digestion Process (돼지분뇨 슬러리 전처리가 메탄 생성 효율에 미치는 영향)

  • Kwang, Hwa-Jeong;Ryu, Seung-Hyun;Namkung, Kyu-Cheol;Khan, Modabber Ahmed;Han, Duk-Woo;Kwag, Jung-Hoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.21 no.4
    • /
    • pp.62-71
    • /
    • 2013
  • This study was carried out to develope a pre-treatment technology for anaerobic digestion. Breaking down large particles into smaller particles enhances the performance of anaerobic digestion by increasing the hydrolysis of particles. A degree of hydrolysis is the most important factor determining the overall efficiency of methane production. Three types of pre-treatment devices (blade-type crusher, ozonization system, cavitation system) were set up and operated to crush solids in pig slurry in order to enhance biodegradability. The effect of pre-treatment on decreasing granular size within pig slurry by three experimental devices were compared. The highest performance of granulization of pig slurry was attained in a combination of blade-type crusher and ozonization system. In batch experiment, there was an improvement of the methane potential by combined pretreatment with crusher and cavitation. In case of pre-treated slurry, biogas and methane production were 325.9 L and 59.7% respectively, while, in untreated slurry, the production were lower; 298.8 L and 55.7%, respectively. These results indicate that higher anaerobic digestion efficiency of pig slurry can be obtained through the pre-treatment.

Removal of ZnO Nanoparticles in Aqueous Phase and Its Ecotoxicity Reduction (수계 내 ZnO 나노입자의 제거 및 생태독성 저감)

  • Kim, Hyunsang;Kim, Younghun;Kim, Younghee;Lee, Sangku
    • Clean Technology
    • /
    • v.22 no.2
    • /
    • pp.89-95
    • /
    • 2016
  • The nanotoxicity of ZnO nanoparticles used in cosmetics and tire industry is one of emerged issues. Herein, the removal of ZnO nanoparticles dispersed in aqueous phase and its ecotoxicity were investigated. In the short-term exposure for fertilized eggs (O. latipes), the deformity was observed at 5 mg L−1 of ZnO nanoparticles in some individuals and delayed hatching of eggs by retarded growth was observed at 10 mg L−1 of ZnO nanoparticles. This result show that ZnO nanoparticles have cytotoxic effect to the organisms lived in water phase. Therefore, herein, the removal of ZnO nanoparticles in aqueous phase by chemical precipitation was investigated. After addition of Na2S and Na2HPO4, the precipitated ZnO was transformed to ZnS and Zn3(PO4)2 particles, respectively. The removal efficiency of ZnO was reached to almost 100% for two cases. In addition, the toxicity tests about ZnS and Zn3(PO4)2 particles showed no acute toxicity for D. magna. This implies that transformation of ZnO to ZnS and Zn3(PO4)2 particles with very low ionization constant might decrease effectively the toxicity of ZnO.