• Title/Summary/Keyword: L-malate

Search Result 54, Processing Time 0.025 seconds

Potentiometric Determination of L-Malate Using Ion-Selective Electrode in Flow Injection Analysis Syste

  • Kwun, In-Sook;Lee, Hye-Sung;Kim, Meera
    • Preventive Nutrition and Food Science
    • /
    • v.4 no.1
    • /
    • pp.79-83
    • /
    • 1999
  • A potentiometric biosensor employing a CO3-2 ion-selective electrode(ISE) and malic enzyme immobilization in al flow injection analysis (FIA) system was constructed. Analytical parameters were optimized for L-malate determination . The CO3-2 -ISE-FIA system was composed of a pump, an injector, a malic enzyme (EC1.1.1.40) reactor, a CO3-2 ion-selective electrode, a pH/mV meter and a recorder. Cofactor NADP was also injected with substrate for theenzyme reaction into the system. Optimized analytical parameters for L-malate determination in the CO3-2 ISE-FIA system were as follows ; flow rate, 14.5ml/hr ; sample injection volume, 100ul; enzyme loading in the reactor, 20 units ; length of the enzyme reactor , 7 cm ; tubing length form the enzyme reactor to the detector as a geometric factor in FIA, 15 cm . The response time for measuring the entire L-malate concentration range (10-2 ~10-5 mol/L ; 4 injections )was <15minutes . In this CO3-2 -ISE-FIA system, the potential differences due to th eformation of CO3-2 by the reaction of malic enzyme on L-malate were correlated to L-malate concentration in the range of 10-2 ~10-5mol/L ; the detection limit was 10-5 mol/L. This potentionmetric CO3-2 ISE--FIA system was found to be useful for L-malate measurement.

  • PDF

Metabolic Pathway of L-Malate in Malo-Alcoholic Fermentation (Malo-Alcohol 발효(醱酵)에 있어서 사과산의 대사경로(代謝経路))

  • Chung, Ki-Taek;Yu, Tae-Shick;Song, Hyung-Ik;Kim, Jae-Kuen;Kim, Chan-Jo
    • Korean Journal of Food Science and Technology
    • /
    • v.16 no.1
    • /
    • pp.90-94
    • /
    • 1984
  • We deduced a possible metabolic pathway of L-malate in a malo-alcoholic yeast, Schizosaccharomyces japonicus var. japonicus St-3. The malic enzyme (EC 1.1.1.40) prepared from the microorganism was about four times as active as that of malate dehydrogenase (EC 1.1.1.37). And Km values of malic enzyme and malate dehydrogenase for malate were found to be 3.125 mM and 4.761 mM, respectively, which referred to the fact that the affinity of malic enzyme for the substrate was greater than that of malate dehydrogenase. We also found that pyruvate was produced with disappearing malate in malo-alcoholic fermentation, and that the addition of $Mn^{2+}$ activated malic enzyme activity. Based on these results obtained we have deduced a main pathway of malate${\rightarrow}$pyruvate${\rightarrow}$acetaldehyde${\rightarrow}$ethanol for the utilization of L-malate by this malo-alcoholic yeast strain.

  • PDF

Purification and Characterization of Mitochondrial Malate Dehydrogenase during Ovarian Development in Aedes aegypti L. (Aedes aegypti L. 난성숙과정중 생성되는 Mitochondrial Malate Dehydrogenase의 정제 및 특성)

  • 김인규;이강석;정규회;박영민;성기창
    • Korean journal of applied entomology
    • /
    • v.34 no.3
    • /
    • pp.181-190
    • /
    • 1995
  • Malate dehydrogenase in the mosquito ovary after a blood meal, Aedes aegypti, was purified and characterized. MDH purification steps involved DEAE-Sepharose, S-Sepharose and Cibacron blue affinity chromatography. The purified MDH was 70,000 daltons in molecular weight and was a homodimer consisting of tow identical subunits. Optimal activity of purified MDH was obtained pH 9.0-9.2 in malate-oxaloacetate reaction and pH 9.8-10.2, in oxaloactate-malate reaction. With obtained pH 9.0-92 in malate-oxaloacetate reaction and pH 9.8-10.2, in oxaloactate-malate reaction. With malate as substrate, purified mitochondrial MDH (1.28$\times$${10}^{-4}$ M) had lower Km value than cytoplasmic MDH (8.92x${10}^{-3}$ M). MDH activity was inhibited by citrate, $\alpha$-ketoglutarate, and ATP. Inhibition of MDH activity by ATP and citrate was less in malate-oxaloacetate reaction and in oxaloacetate-malate reaction. MDH activity was completely inhibited by ATP in oxaloacetate-malate reaction and not inhibited by citrate in malate-oxaloacetate reaction. Temporal activity change of MDH is similar to that of isocitrate dehydrogenase in the ovary after blood feeding; their activities in the ovary began to rise at 18 hours after a blood meal, and reached at the maximal level at 48 hours.

  • PDF

Potentimetric Biosensor for Detection of L-Malate and D-Isocitrate Employing ${CO_{3}}^2-$ -Selective Electrode and Enzyme Immobilization in Flow Injection Analysis

  • Kwun, In-Sook;Kim, Meera
    • Preventive Nutrition and Food Science
    • /
    • v.3 no.1
    • /
    • pp.36-42
    • /
    • 1998
  • Ion-selective eleltrodes(ISEs) are simple electrodechemical devices for the direct measurement of ions in the samples. A novel potentiometric biosensor for the determination of L-Malate or D-isocitrate has been developed by using CO2-3 -ISE-FIA system was composed of a pump, an injector, a malic enzyme or isocitric dehydrogenase enzyme reactor, a CO2-3 -ISE, a pH/mV meter, and an integrater. The various factors, such as buffer capacity types of plstericizer and polymer, were optimized for the CO2-3 selectivity. In this novel CO2-3 --ISE-FIA system, the potential difference due to the amount of CO2-3 produced from each enzyme reaction was proportional to the amount of L-malate or D-isocitrate.

  • PDF

The Studies for the Malate Tissue Biosensor Using Malate Dehydrogenase(Decarboxylating) in the Bundle Sheath Cell of the Corn Leaf (옥수수잎의 유관속초세포내에 들어 있는 Malate Dehydrogenase(Decarboxylating)을 이용한 Malate 측정용 조직바이오센서에 관한 연구)

  • 김의락;노광수
    • KSBB Journal
    • /
    • v.9 no.3
    • /
    • pp.319-324
    • /
    • 1994
  • A biosensor for the measurement of malate has been constructed by the sodium-alginate immobilized bundle sheath cell tissue of corn leaf containing malate dehydrogenase (decarboxylating) (EC 1. 1. 1. 40) on the CO2 gas-sensing electrode. The proposed tissue sensor had the linear in the range of malate concentration $5.5{\times}10^{-5}M∼2.5{\times}10^{-2}M$ with a slope of 53.5 mV/decade in 0.02M Tris-HCl buffer solution at optimum pH 8.0, and $25^{\circ}C$. A response time was 16∼18min. The present L-malate sensing tissue sensor is stable for more than one week. At pH 7.4, Km value was $0.6{\times}10^{-5}M$. The various kinds of salt did not effect the signal of malate tissue biosensor as the inhibitor. We can measure the malate by the CO2 electrode at the pH=8.0. Thus, the proposed tissue sensor will be useful for the measurement of malate.

  • PDF

Study on the Method of Differentiating between Fresh and Frozen Chicken Meat by Using Mitochondrial Malate Dehydrogenase Activity (Mitochondrial Malate Dehydrogenase 활성을 이용한 냉장계육과 냉동계육의 판별법에 관한 연구)

  • 이치호;서정희;이지영;류경희
    • Food Science of Animal Resources
    • /
    • v.24 no.2
    • /
    • pp.151-155
    • /
    • 2004
  • This study was performed to develop the method of differentiation fresh and frozen meat by using the measurement of mitochondrial malate dehydrogenase. The principle of this experiment is based on the fact the enzyme proteins associated with mitochondria membrane could be released by freezing. The methods were studied by measurements of protein concentration of meat press juice, WHC (water-holding capacity), drip loss and mitochondrial malate dehydrogenase enzyme activity. Samples were stored at 4$^{\circ}C$ and -18$^{\circ}C$ during storage period, respectively. Protein concentration of meat press juice was ranged from 8.5 mg/mL to 12.7 mg/mL and increased by freezing below at -18$^{\circ}C$(p<0.05). The WHC was not significantly different between fresh meat and frozen chicken meat (p>0.05). The amount of drip loss of fresh and frozen chicken meat at 4$^{\circ}C$ and -18$^{\circ}C$ was not significantly different (p>0.05). Mitochondrial malate dehydrogenase activity of frozen meat (-18$^{\circ}C$) was significantly higher (p<0.05) than that of fresh meat. Also, enzyme activity of frozen meat was maintained at the same level after 3 minutes reaction. But fresh meat had not this reaction. From these results, it suggests that mitochondrial malate dehydrogenase can be used as a promising enzyme to differentiate between fresh and frozen meat.

Complete genome sequence of Lactobacillus plantarum JBE245 isolated from Meju (메주에서 분리한 Lactobacillus plantarum JBE245 균주의 유전체 서열 분석)

  • Heo, Jun;Uhm, Tai-Boong
    • Korean Journal of Microbiology
    • /
    • v.53 no.4
    • /
    • pp.344-346
    • /
    • 2017
  • Lactobacillus plantarum is widely found in fermented foods and has various phenotypic and genetic characteristics to adapt to the environment. Here we report the complete annotated genome sequence of the L. plantarum strain JBE245 (= KCCM43243) isolated for malolactic fermentation of apple juice. The genome comprises a single circular 3,262,611 bp chromosome with 2907 coding regions, 45 pseudogenes, and 91 RNA genes. The genome contains 4 malate dehydrogenase genes, 3 malate permease genes and various types of plantaricin-synthesizing genes. These genetic traits meet the selection criteria of the strains that should prevent the spoilage of apple juice during fermentation and efficiently convert malate to lactic acid.

The Development of Differentiating Method between Fresh and Frozen Beef by Using the Mitochondrial Malate Dehydrogenase Activity (Mitochondrial Malate Dehydrogenase 활성을 이용한 냉장우육과 냉동우육의 판별법 개발)

  • Han, Kyu-Ho;Kim, Nam-Kyu;Lee, Si-Kyung;Cho, Jin-Kook;Choi, Kang-Duk;Jeons, You-Jin;Lee, Chi-Ho
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.34 no.10
    • /
    • pp.1599-1605
    • /
    • 2005
  • The object of this study is to develop the method for differentiating fresh meat from frozen meat by using the measurement of the mitochondrial malate dehydrogenase in the Korean native cattle. The principle of this experiment is based on the fact that the enzyme proteins associated with mitochondrial membrane could be released by freezing. The methods of differentiating fresh meat from thawed, frozen meat were studied by measurements of mitochondrial malate dehydrogenase activity of meat press juice. Fresh and frozen beef were stored at 4, -4, -18 and -77$^{\circ}C$ for 15-day storage period. A meat press machine using air pressure was manufactured especially for these experiments, and sufficient amount of drip (about 0.15 mL/g) from 1.5 g of beef sample was efficiently obtained under a pressure of 8 kg/$cm^{2}$ generated by the meat pressing machine. The mitochondrial malate dehydrogenase activities of frozen meat drip i년ices stored at -18 and -77$^{\circ}C$ were significantly higher than those of fresh and frozen meat samples at -4$^{\circ}C$ (p < 0.05) during 10-min reaction period. However, the enzyme activities of the frozen meat drip juices (-18 and -77$^{\circ}C$) disappeared after 5 minutes of the reaction, which was not observed from the fresh and -4$^{\circ}C$ frozen meats. The enzyme activity maintained until 12 minutes for the fresh and -4$^{\circ}C$ frozen meats. From these results, the mitochondrial malate dehydrogenase could be considered as an indicator to differentiate fresh beef from frozen one.

Malate Stimulation on Growth Rate of Leuconostoc oenos (Leuconostoc oenos의 생장률에 대한 사과산의 촉진 작용)

  • Lee, S.O.;Pack, M.Y.
    • Microbiology and Biotechnology Letters
    • /
    • v.8 no.4
    • /
    • pp.221-227
    • /
    • 1980
  • The presence of L-malic acid in culture media contaniing glucose stimulated the growth rates of Leuconostoc oenos strains. The L-malic acid also stimulated the synthesis and activity of D-malate dehydrogenase (D-LDH) resulting in rapid production of D-lactate from glucose. The rapid utilization of glucose under the presence of L-malic acid may explain, in part, the stimulatory effect of the compound on the growth rate of leuconostocs.

  • PDF

Effects of Metal-ions on Enzyme Activities from Hansenula anomala B-7 Grown in Medium Containing Cadmium (카드뮴 함유 배지에서 배양된 Hansenula anomala B-7의 Malate Dehydrogenase 활성에 미치는 금속 이온의 영향)

  • Yu, Tae Shick
    • Korean Journal of Microbiology
    • /
    • v.34 no.4
    • /
    • pp.225-230
    • /
    • 1998
  • This study was carried out to investigate the effect of cadmium ion on activities of cadmium-adapted malate dehydrogenase (adapted-MDH), which is defined to be an enzyme obtained from an extreme cadmium-tolerant yeast Hansenula anomaul B-7 grown in medium containing 1 mM cadmium ion. Cadmium-nonadapted malate dehydrogenase (nonadapted-MDH), which is defined to be enzyme expressed in the cells grown in $Cd^{2+}$ -free medium was also characterized by the same manner. Activities of the adapted-MDH and the nonadapted-MDH were strongly induced to 450% and to 150% in comparision with the control examined with 1 mM $Cd^{2+}$, respectively. The adapted-MDH activity was stimulated to 147%, 150%, and 135% compared with the control analyzed with 1 mM $Zn^{2+}$, 1 mM $Mn^{2+}$, and 1 mM $Ca^{2+}$, respectively and to 925%, and 250% compared with the control analyzed in the presence of 2 mM $Cd^{2+}$, and 2.5 mM $Zn^{2+}$, respectively. Km values of the adapted-MDH and the nonadapted-MDH were calculated to be the same 6.9 mM for L-malate, respectively. The Km value of the nonadapted-MDH was not changed by $Cd^{2+}$ while Vmax of the nonadapted-MDH was increased by $Cd^{2+}$. In contrast, both the Km and the Vmax values of the adapted-MDH were changed by $Cd^{2+}$.

  • PDF