• Title/Summary/Keyword: L-fucose

Search Result 58, Processing Time 0.025 seconds

An Electron Microscopic Radioautographic Study of the Synthesis and Migration of the Glycoproteins in the Osteoclast of the Mice Maxillary Alveolar Bone (생쥐 상악치조부에서의 파골세포의 당단백 합성 및 이동에 관한 전자현미경 자기방사법적 연구)

  • Kim, Myung-Kook
    • Applied Microscopy
    • /
    • v.22 no.2
    • /
    • pp.118-126
    • /
    • 1992
  • The pathway and time course of fucose-containing glycoprotein synthesis and intracellular translocation in osteoclasts of the mice maxillary alveolar bone were investigated by electron microscopic radioautography. Male Balb-C mice weighing 17gm were anesthetized with Nembutal and injected via the external jugular vein with 2.5 mCi of $L-[6-^{3}H]-fucose$ (specific activity 16.8 mCi/mmol) in 0.1 ml of sterile saline solution. At 5, 10, 20, 35 minutes and 8 hours after administration of the $^{3}H-fucose$, animals were killed by intracardiac perfusion of 30ml of 2% glutaraldehyde in a modified Tyroid solution, pH 7.4. The maxillae were then removed and further fixed in Karnovsky fixative for an additional 3-4 hours. After rinsing in 0.1M cacodylate buffer for 10 minutes, the maxillae were demineralized for 2 weeks at $4^{\circ}C$ in ethylene diamine tetra acetate containing 2% glutaraldehyde. The first interdental areas were mesiodistally sectioned into slices of 1mm thickness and postfixed in osmium tetroxide. Tissues were then dehydrated and embedded in Poly Bed. To prepare electron microscopic radioautography, the dipping method of Kopriwa (1973) was employed. Thin sections were coated with a crystalline monolayer of ILford $L_4$ photographic emulsion. After exposure for 4 months at $4^{\circ}C$, the sections were developed Kodak Microdol-X and Phenidon (for compact grains), fixed in 30% sodium thiosulfate, stained with uranyl acetate and lead citrate and examined in the electron microscope (JEOL 1200 EX). At 5, 10 and 20 minutes after injection, $^{3}H-fucose$ was concentrated in Golgi cisternae of the osteoblasts. By 35 minutes the labels were observed over small vesicles in the suprannclear area of osteoclasts. At 8 hours, numerous silver grains were located on the ruffled border and cell membrane of osteoclasts. These results indicate that fucose molecules are added in the Golgi apparatus and small vesicles appear to be responsible for translocation of the glycoproteins to the marginal portion of osteoblasts. The glycoproteins are distributed on the osteoclast cell surface and especially over the ruffled border.

  • PDF

The Anti-Oxidant and Whitening Activities of Seaweeds Mixture Fermentation Extracts (복합해조류 발효추출물의 항산화, 미백 활성)

  • Kang, Se-Won;Kim, Eun Ji;Jung, Yu-Rin;Ko, Hae Ju
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.44 no.3
    • /
    • pp.327-334
    • /
    • 2018
  • Studies on seaweed-based materials have been progressing steadily day by day. In this experiment, we checked the anti-oxidant, whitening, and moisturizing activities of fermented extract from a mixture of Undariapinnatifida, Saccharina japonica, and Gloiopeltis furcate. Also, Lactobacillus sakei strains of kimchi were used as the lactic acid bacteria. The physiological status of the combined seaweed extracts was also investigated. The 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulphonic acid (ABTS) radical scavenging results showed that the inhibitory effects of the combined seaweed extracts were higher than the positive control. Furthermore, 3,4-dihydroxy-L-phenylalanine (L-DOPA) and Mushroom tyrosinase tests were conducted during the whitening efficacy experiment. Hence, it was confirmed that the whitening activity of fermented extracts was greater than the extracts without fermentation. HPLC analysis of fucose (an active ingredient of seaweed) was also performed and a standard method for solvent conditions was newly established. This study suggests that the composite of algae extract has potentials to be used as anti-oxidant and whitening agents in cosmetics.

Isolation and Characterization of Marine Bacterial Strain Degrading Fucoidan from Korean Undaria pinnatifida Sporophylls

  • Kim, Woo-Jung;Kim, Sung-Min;Lee, Yoon-Hee;Kim, Hyun-Guell;Kim, Hyung-Kwon;Moon, Seong-Hoon;Suh, Hyun-Hyo;Jang, Ki-Hyo;Park, Yong-Il
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.4
    • /
    • pp.616-623
    • /
    • 2008
  • In spite of an increasing interest in fucoidans as biologically active compounds, no convenient commercial sources with fucoidanase activity are yet available. A marine bacterial strain that showed confluent growth on a minimal medium containing fucoidan, prepared from Korean Undaria pinnatifida sporophylls, as the sole carbon source was isolated and identified based on a 16S rDNA sequence analysis as a strain of Sphingomonas paucimobilis, and named Sphingomonas paucimobilis PF-1. The strain depolymerized fucoidan into more than 7 distinct low-molecular-mass fucose-containing oligosaccharides, ranging from 305 to 3,749 Da. The enzyme activity was shown to be associated with the whole cell, suggesting the possibility of a surface display of the enzyme. However, a whole-cell enzyme preparation neither released the monomer L-fucose from the fucoidan nor hydrolyzed the chromogenic substrate p-nitrophenyl-${\alpha}$-L-fucoside, indicating that the enzyme may be an endo-acting fucoidanase rather than an ${\alpha}$-L-fucosidase. Therefore, this would appear to be the first report on fucoidanolytic activity by a Sphingomonas species and also the first report on the enzymatic degradation of the Korean Undaria pinnatifida sporophyll fucoidan. Moreover, this enzyme activity may be very useful for structural analyses of fucose-containing polysaccharides and the production of bioactive fucooligosaccharides.

Anticoagulant Activities of Brown Seaweed Extracts in Korea (국내산 주요 갈조류 추출물의 항혈액응고 활성)

  • Kim, Young-Myoung;Kim, Dong-Soo;Choi, Yong-Suk
    • Korean Journal of Food Science and Technology
    • /
    • v.36 no.6
    • /
    • pp.1008-1013
    • /
    • 2004
  • Effects of extraction conditions and molecular fractionation on anticoagulant activities of major brown seaweeds in Korea were investigated. Hot water extracts of C. costata, U. pinnatifida (Sporophyte), L. japonica, K. crassifolia, E. stolonifera, E. bicyclis, S. horneri, and E. kurome increaced activated partial thromboplastin time (APTT) over 190 seconds, which may be related to intrinsic pathway of blood coagulation. Hot water extract of E. Kurome (EKJ) was further fractionated by ethanol precipitation. EKJ-eim, ethanol-insoluble material of EKJ, showed higher anticoagulant activity than EKJ. EKJ-eim was further fractioned with ultrafiltration. EKJ-eim 1, (over 100 kDa) fraction showed higher APTT activity than EKJ-eim. A EKJ-eim 1 was sulfated polysaccharide consisting of fucose, xylose, mannose, galactose, glucose and, sulfate at molar ratio of 1 : 0.05 : 0.10 : 0.15 : 0.17 : 1.46. The anticoagulant activity increased as sulfate content and molecular weight increased.

Sugar Constituents of Jalapin from Sweet Potato Tubers (고구마樹脂중 잘라핀의 糖構成에 관한 硏究)

  • SU RAE LEE;KOO HEUNG CHUNG;HO SIK KIM
    • Journal of the Korean Chemical Society
    • /
    • v.13 no.1
    • /
    • pp.96-101
    • /
    • 1969
  • Jalapin purified from the tubers of the sweet potato (Ipomoea batatas) was deacylated and subjected to structural elucidation. Complete and degraded acid hydrolyses indicated the presence of L-rhamnose, D-fucose and D-glucose in the molar ratio of 1: 1: 1 and in the increasing order of acid-stability. While two moles of periodate were consumed per mole of the product, D-glucose survived in the oxidation. The following structure was, therefore, proposed tentatively for the deacylated jalapin: L-$Rha_f$-(1${\to}$4)-D-$Fuc_p$-(1${\to}$3)-D-$Glu_p$-(1${\to}$11)-jalapinolic acid.

  • PDF

Biochemical Characteristics and Function of a Fucosyltransferase Encoded by ste7 in Ebosin Biosynthesis of Streptomyces sp. 139

  • Chang, Ming;Bai, Li-Ping;Shan, Jung-Jie;Jiang, Rong;Zhang, Yang;Guo, Lian-Hong;Zhang, Ren;Li, Yuan
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.10
    • /
    • pp.1092-1097
    • /
    • 2009
  • A novel exopolysaccharide named Ebosin was produced by Streptomyces sp. 139, with medicinal activity. Its biosynthesis gene cluster (ste) has been previously identified. For the functional study of the ste7 gene in Ebosin biosynthesis, it was disrupted with a double crossover via homologous recombination. The monosaccharide composition of EPS-7m produced by the mutant strain Streptomyces sp. 139 ($ste7^-$) was found altered from that of Ebosin, with fucose decreasing remarkably. For biochemical characterization of Ste7, the ste7 gene was cloned and expressed in Escherichia coli BL21. With a continuous coupled spectrophotometric assay, Ste7 was demonstrated to have the ability of catalyzing the transfer of fucose specifically from GDP-$\beta$-L-fucose to a fucose acceptor, the lipid carrier located in the cytoplasmic membrane of Streptomyces sp. 139 ($ste7^-$). Therefore, the ste7 gene has been identified to code for a fucosyltransferase, which plays an essential role in the formation of repeating sugars units during Ebosin biosynthesis.

Production of Algal Biomass and High-Value Compounds Mediated by Interaction of Microalgal Oocystis sp. KNUA044 and Bacterium Sphingomonas KNU100

  • Na, Ho;Jo, Seung-Woo;Do, Jeong-Mi;Kim, Il-Sup;Yoon, Ho-Sung
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.3
    • /
    • pp.387-397
    • /
    • 2021
  • There is growing interest in the production of microalgae-based, high-value by-products as an emerging green biotechnology. However, a cultivation platform for Oocystis sp. has yet to be established. We therefore examined the effects of bacterial culture additions on the growth and production of valuable compounds of the microalgal strain Oocystis sp. KNUA044, isolated from a locally adapted region in Korea. The strain grew only in the presence of a clear supernatant of Sphingomonas sp. KNU100 culture solution and generated 28.57 mg/l/d of biomass productivity. Protein content (43.9 wt%) was approximately two-fold higher than carbohydrate content (29.4 wt%) and lipid content (13.9 wt%). Oocystis sp. KNUA044 produced the monosaccharide fucose (33 ㎍/mg and 0.94 mg/l/d), reported here for the first time. Fatty acid profiling showed high accumulation (over 60%) of polyunsaturated fatty acids (PUFAs) compared to saturated (29.4%) and monounsaturated fatty acids (9.9%) under the same culture conditions. Of these PUFAs, the algal strain produced the highest concentration of linolenic acid (C18:3 ω3; 40.2%) in the omega-3 family and generated eicosapentaenoic acid (C20:5 ω3; 6.0%), also known as EPA. Based on these results, we suggest that the application of Sphingomonas sp. KNU100 for strain-dependent cultivation of Oocystis sp. KNUA044 holds future promise as a bioprocess capable of increasing algal biomass and high-value bioactive by-products, including fucose and PUFAs such as linolenic acid and EPA.

Soluble Expression of the Fucosyltransferase Gene from Helicobacter pylori in Escherichia coli by Co-expression of Molecular Chaperones (샤페론단백질동시발현기술을이용하여 Helicobacter pylori 유래의 fucosyltransferase의수용성생산)

  • Lee, A Reum;Li, Ling;Shin, So-Yeon;Moon, Jin Seok;Eom, Hyun-Ju;Han, Nam Soo
    • Microbiology and Biotechnology Letters
    • /
    • v.43 no.3
    • /
    • pp.212-218
    • /
    • 2015
  • Fucosyltransferases (FucTs) catalyze fucosyl transfer from guanosine-diphosphate fucose (GDP-β-L-fucose) to acceptor molecules to form fucosyloligosaccharides with α-glycosidic linkages. However, when FucT genes have been expressed in Escherichia coli, most cases have resulted in the production of inclusion bodies. In this study, to overcome this drawback, molecular chaperones were co-expressed with α1,2-fucosyltransferase (FucT2) in E. coli. For this, the pACYC184 vector, having genes for chaperones such as GroEL, GroES, DnaK, DnaJ, and GrpE, were transformed into E. coli BL21 (DE3) star harboring pHFucT2, including the FucT2 gene from Helicobacter pylori 26695. The results from SDS-PAGE showed that 5 chaperones were successfully expressed and the soluble fraction of FucT2 was also increased. HPLC analysis revealed that the coexpression of chaperone proteins resulted in a 5-fold increase in the total activity of fucosyltransferase in E. coli. In conclusion, the FucT2 expression system developed in this study can be used as a useful tool for the synthesis of fucosyloligosaccharides.

Effects of Mono- and Polysaccharides on In Vitro Fertility of Boar Spermatozoa

  • Hwang, In-Sun;Cheong, Hee-Tae;Yang, Boo-Keun;Kim, Choung-Ik;Park, Choon-Keun
    • Reproductive and Developmental Biology
    • /
    • v.31 no.2
    • /
    • pp.115-120
    • /
    • 2007
  • This study was conducted to examine the effect of several saccharides on the induction of capacitation and acrosome reaction (AR) and to examine the effects of mono and polysaccharides on the penetration activity of boar spermatozoa. Spermatozoa were inseminated in medium with fucose, galactose and mannose as monosaccharide, and fucoicIan. galactan and marman as polysaccharide. The penetration rates were significantly (p<0.05) lower in medium with galactose (40.6%), mannose (38.1%), fucose (41.6%) and fucoidan (36.6%) compared with control (56.7%). The rates of AR were increased (40.7 to 59.8%) by the preincubation periods prolonged from 0 to 4 hr (p<0.05). Similar tendencies were observed in AR when spermatozoa were treated with monosaccharides, but not significantly differ among the groups treated with different time of preincubation with some exception of galactose. When spermatozoa were treated with polysaccharides, the rates of AR were significantly (p<0.05) increased by preincubation time prolonged from 0 to 4 hr with an exception of fucoidan. In conclusion, the present study suggests that penetration rate of spermatozoa is higher in presence of polysaccharides than monosaccharides. Also, it may resume that the comparing to control, the all saccharides (L-fucose, D-galactose, D-mannose, fucoidan. galactan and mannan)-treated groups slightly increase the AR pattern as preincubation time prolonged.

Chemical Composition and Rheological Properties of Polysaccharides Isolated from Different Parts of Brown Seaweed Undaria pinnatifida (미역(Undaria pinnatifida) 부위별로 추출한 다당의 이화학적 특성)

  • Koo, Jae-Geun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.53 no.5
    • /
    • pp.665-671
    • /
    • 2020
  • The chemical and rheological properties of fucoidan and alginate prepared from different parts of Undaria pinnatifida (sporophyll, frond, stipe) were investigated. The algal materials were extracted with HCl (pH 2.0, 3 h at 70℃) to prepare fucoidan, and the remaining solid was continuously re-extracted with Na2CO3 (pH 10.0, 70℃, 3 h) to prepare alginic acid. The fucoidan and alginic acid contents in the sporophyll, frond, and stipe were 11.14%, 3.84%, and 1.73% and 22.04%, 37.14%, and 31.74%, respectively. The content of fucoidan and alginate depends on the part extracted. The fucoidan extracted from the sporophyll mainly consists of fucose and galactose, but the fucoidan extracted from frond and stipe contains mannose in addition to fucose and galactose. Fourier-transform infrared spectroscopy analysis of fucoidan and alginate suggests the presence of sulfate groups (1261 and 840 cm-1) and carboxyl groups (1626 and 1419 cm-1), respectively. Alginate solutions (5%) had a low viscosity of 10.84-31.63 mPa·s. The activation energies of fucoidan and sodium alginate were 14.45-18.38 kJ/mol and 18.61-22.06 kJ/mol, respectively. The D-mannuronic acid/L-guluronic acid (M/G) ratios of alginate showed a relatively high (frond, 3.72; stipe, 2.88; and sporophyll, 1.80).