• Title/Summary/Keyword: L-chain gene

Search Result 362, Processing Time 0.016 seconds

MHC Class II Allele Association in Korean Children With IgA Nephropathy and its Role as a Prognostic Factor (한국인 IgA 신병증 환아에서 MHC Class II유전자형과 예후와의 관계 분석)

  • Kim Pyung Kil;Yook Jinwon;Kim Ji Hong;Jang Yoon Soo;Shin Jeon-Soo;Choi In-Hong
    • Childhood Kidney Diseases
    • /
    • v.4 no.1
    • /
    • pp.33-39
    • /
    • 2000
  • Purpose: Our study was designed to investigate the association of MHC Class II (DR, DQ) allele with IgA nephropathy and its significance as a prognostic factor for progression to ESRD Material and Methods: 69 children with IgA nephropathy with normal renal function(serum creatinine $\leq$ 1.5mg/dL) was classified as group A and 70 patients who received renal transplantation due to IgA nephropathy were selected as group B. The HLA-DQB1 and HLA-DRB1 alleles were studied by polymerase chain reaction using sequence specific primers. We have compared the difference in alleles between these two groups and with normal control and also examined any possible effect of the MHC class II genes on the histopathological severity and prognosis of IgAN. Results: Mean age was $8.8{\pm}2.9$ years in group A and $35.0{\pm}15.5$ years in group B. Male to female ratio was 2.8:1 in group A and 2.5:1 in group B. There was a significantly higher frequency of HLA-$DQB1^*03\;and\;DQB1^*05$ in Group B. The frequency of HLA-$DQB1^*0302\;and\;^*05031$ allele had increasing tendency in Group B(P<0.05). HLA-$DRB1^*03\;and\;^*05$ were more common in Group B(P<0.05). HLA-$DRB1^*04$ allele was the most common DR alleles in both group, but there was no statistical significance. There were no significant correlation with MHC class 13 genes on the hjstopathological severity in Group A. Conclusion: In conclusion, $HLA-DQB1^*0302\;and\;HLA-DQB1^*05031 $ allele seemed to be more common in transplanted patients compared to group with normal renal function suggesting that this allele is associated with poor prognosis in IgAN. However larger studies and follow up are required to confirm this due to uncharacterized heterogeneity in etiopathogenesis of IgA nephropathy and possibly one or more than one gene may exert influence in determining susceptibility to the diseases.

  • PDF

Biological Functions of N- and O-linked Oligosaccharides of Equine Chorionic Gonadotropin and Lutropin/Chorionic Gonadotropin Receptor

  • Min, K.S.
    • Korean Journal of Animal Reproduction
    • /
    • v.24 no.4
    • /
    • pp.357-364
    • /
    • 2000
  • Members of the glycoprotein family, which includes CG, LH, FSH and TSH, comprise two noncovalently linked $\alpha$- and $\beta$-subunits. Equine chorionic gonadotropin (eCG), known as PMSG, has a number of interesting and unique characteristics since it appears to be a single molecule that possesses both LH- and FSH-like activities in other species than the horse. This dual activity of eCG in heterologous species is of fundamental interest to the study of the structure-function relationships of gonadotropins and their receptors. CG and LH $\beta$ genes are different in primates. In horse, however, a single gene encodes both eCG and eLH $\beta$ -subunits. The subunit mRNA levels seem to be independently regulated and their imbalance may account for differences in the quantities of $\alpha$ - and $\beta$-subunits in the placenta and pituitary. The dual activities of eCG could be separated by removal of the N-linked oligosaccharide on the $\alpha$-subunit Asn 56 or CTP-associated O-linked oligosaccharides. The tethered-eCG was efficiently secreted and showed similar LH-like activity to the dimeric eCG. Interestingly, the FSH-like activity of the tethered-eCG was increased markedly in comparison with the native and wild type eCG. These results also suggest that this molecular can implay particular models of FSH-like activity not LH-like activity in the eCG/indicate that the constructs of tethered molecule will be useful in the study of mutants that affect subunit association and/or secretion. A single-chain analog can also be constructed to include additional hormone-specific bioactive generating potentially efficacious compounds that have only FSH-like activity. The LH/CG receptor (LH/CGR), a membrane glycoprotein that is present on testicular Leydig cells and ovarian theca, granulosa, luteal, and interstitial cells, plays a pivotal role in the regulation of gonadal development and function in males as well as in nonpregnant and pregnant females. The LH/CGR is a member of the family of G protein-coupled receptors and its structure is predicted to of a large extracellular domain connected to a bundle of seven membrane-spanning a-helices. The LH/CGR phosphorylation can be induced with a phorbol ester, but not with a calcium ionophore. The truncated form of LHR also was down-regulated normally in response to hCG stimulation. In contrast, the cell lines expressing LHR-t631 or LHR-628, the two phosphorylation-negative receptor mutant, showed a delay in the early phase of hCG-induced desensitization, a complete loss of PMA-induced desensitization, and an increase in the rate of hCG-induced receptor down-regulation. These results clearly show that residues 632~653 in the C-terminal tail of the LHR are involved in PMA-induced desensitization, hCG-induced desensitization, and hCG-induced down-regulation. Recently, constitutively activating mutations of the receptor have been identified that are associated with familial male-precocious puberty. Cells expressing LHR-D556Y bind hCG with normal affinity, exhibit a 25-fold increase in basal cAMP and respond to hCG with a normal increase in cAMP accumulation. This mutation enhances the internalization of the free and agoinst-occupied receptors ~2- and ~17- fold, respectively. We conclude that the state of activation of the LHR can modulate its basal and/or agonist-stimulated internalization. Since the internalization of hCG is involved in the termination of hCG actions, we suggest that the lack of responsiveness detected in cells expressing LHR-L435R is due to the fast rate of internalization of the bound hCG. This statement is supported by the finding that hCG responsiveness is restored when the cells are lysed and signal transduction is measured in a subcellular fraction (membranes) that cannot internalize the bound hormone.

  • PDF