• Title/Summary/Keyword: L-bending

Search Result 452, Processing Time 0.028 seconds

A Study on The Bending Characteristic of Sandwich Sheet Metal with Dimple Type-Inner-Structure (딤플형 내부구조재를 갖는 접합판재의 굽힘 특성연구)

  • Kim, H.G.;Oh, S.K.;Yoo, J.S.;Seong, D.Y.;Chung, W.J.;Kim, J.H.
    • 한국금형공학회:학술대회논문집
    • /
    • 2008.06a
    • /
    • pp.31-34
    • /
    • 2008
  • The L-bending of inner-structure bonded sandwich sheet metal is examined to reduce springback and defects of bent parts. The specimen is composed of top and bottom layers and a middle layer with dimple type-inner-structure and each layer is bonded by resistance welding. This specimen with hollow type-inner-structure shows different bending characteristics from the conventional sandwich sheet metals with solid type-inner-structure. The experiments were conducted for two kinds of working conditions, that is, clearance and movement of first bent specimen for second bending. The deformed profile, bend angle and springback were investigated and compared and then the proper working conditions for L-bending of sandwich sheet metal were prosed.

  • PDF

Bending and Compressive Properties of Crystallized TCP/PLLA Composites

  • Kobayashi, Satoshi;Sakamoto, Kazuki
    • Advanced Composite Materials
    • /
    • v.18 no.3
    • /
    • pp.287-295
    • /
    • 2009
  • $\beta$-Tricalcium phosphate ($\beta$-TCP) particles reinforced bioresorbable plastics poly-L-lactide (PLLA) composites were prepared by injection molding. The nominal weight ratio of $\beta$-TCP was selected as 5, 10 and 15%. In order to clarify effects of the PLLA crystallinity on the mechanical properties, the specimens were heat treated isothermally. Results of differential scanning calorimetry indicated that the PLLA crystallinity increased with increasing heat treatment temperature. Bending and compressive tests were conducted on the specimen with different $\beta$-TCP contents and crystallinities. The results show that the bending and compressive moduli increased with increasing $\beta$-TCP contents and crystallinity. On the other hand, bending strength decreased with increasing $\beta$-TCP contents. Maximum bending strength was obtained at the heat treatment of $70^{\circ}C$ for 24 h, whereas compressive 0.2% proof strength increased with increasing heat treatment temperature. This difference is attributed to the difference in the microscopic damages.

EXPERIMENTAL STUDY ON PROBABILITY OF STRENGTH FOR EPOXY ADHESIVE-BONDED METALS

  • Seo, Do-Won;Lim, Jae-Kyoo;Jeon, Yang-Bae;Yoon, Ho-Cheol
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.688-693
    • /
    • 2002
  • Adhesive bonding is becoming one of the popular joining techniques in metal industries, since it has some advantages over other techniques such as welding and diffusion bonding, e.g., any dissimilar metals are easily adhesive-bonded together. In this study, the experiments were carried out in order to provide the statistical data with strength evaluation methods: tension, shear and four-point bending tests for thermoplastic epoxy resin based adhesive-bonded metal joints. We should certificate on the probability of the adhesive strength that has the tendency of brittle fracture, the adhesive bonding strength between metals with thermoplastic adhesive has the best probability at four-point bending test. The strength testing method that has higher probability is four-point bending test, shear test and tensile test in order.

  • PDF

Effect of Grain Angle on Bending Properties of Pinus densiflora (소나무재의 휨 가공성에 미치는 섬유경사각의 영향)

  • Kim, Jung-Hwan;Lee, Weon-Hee
    • Journal of the Korean Wood Science and Technology
    • /
    • v.29 no.2
    • /
    • pp.118-125
    • /
    • 2001
  • In this study, it was examined the characteristics of bending property of red pine(Pinus densiflora S, et Z.) related to slope of grain. At first, we have investigated the characteristics of wood species for bending property. At second, it was examined the relationships between grain angle and its related bending property. Specimens were made following to grain angle $0^{\circ}$, $30^{\circ}$, $45^{\circ}$, $60^{\circ}$, $90^{\circ}$, respectively. Dimension of wood materials was $10mm(T){\times}20mm(R){\times}350mm(L)$. Microwave irradiation time for bending process was 30, 60, 90, 120 seconds. The result of this study were as follows ; 1. Grain angle of wood was closely related to Young's modulus on bending process. In the process of bending with various grain angle, wood bending was easily proceed on the high grain angle range. 2. However, the strength of bent wood was very weak when the grain angle was high. Therefore, it was considered suitable grain angle for bending was existed. 3. The characteristics of wood properties for wood bending were very different among wood species.

  • PDF

Measurement of Dynamic MOE of 3-Ply Laminated Woods by Flexural Vibration and Comparison with Blending Strength and Creep Performances

  • Park, Han-Min;Byeon, Hee-Seop
    • Journal of the Korean Wood Science and Technology
    • /
    • v.34 no.2
    • /
    • pp.46-57
    • /
    • 2006
  • To estimate nondestructively strength performances of laminated woods, 3-ply parallel- and cross-laminated wood specimens exposed under atmosphere conditions after bending creep test were prepared for this study. The effects of density of species, arrangement of laminae and lamination types on dynamic MOE obtained by flexural vibration were investigated, and regression analyses were conducted in order to estimate static bending strength and bending creep performances. Dynamic MOE of parallel-laminated woods showed 1.0~1.2 times higher values than static bending MOE, and those of cross-laminated woods showed 1.0~1.4 times higher values than static bending MOE. The degree of anisotropy of dynamic MOE perpendicular to the grain of face laminae versus that parallel to the grain of face laminae was markedly decreased by cross-laminating. There were strong correlations between dynamic MOE by flexural vibration and static bending MOE (correlation coefficient r = 0.919~0.972) or bending MOR (correlation coefficient r = 0.811~0.947) of 3-ply laminated woods, and the correlation coefficient were higher in parallel-laminated woods than in cross-laminated woods. It indicated that static bending strength performances were able to be estimated from dynamic MOE by flexural vibration. Also, close correlations between the reciprocal of dynamic MOE by flexural vibration and initial compliance at 0.008 h of 3-ply laminated woods were found (correlation coefficient r = 0.873~0.991). However, the correlation coefficient between the reciprocal of dynamic MOE and creep compliance at 168 h of 3-ply laminated woods was considerably lower than those between dynamic MOE and initial compliance, and it was hard to estimate creep compliance with a high accuracy from dynamic MOE due to the variation of creep deformation.

Bending Characteristic of a Flexible Antenna (Flexible Antenna의 Bending 특성)

  • Kim, Ho-Jin;Lee, Seon-Hyeon;Lee, Young-Hun;Lee, Sang-Seok
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.9
    • /
    • pp.888-896
    • /
    • 2011
  • In this paper, we studied characteristics of the bent antenna febricated on Flexible-PCB. Flexible-PCB consisting of a polyimide has dielectric constant 3.5, thickness 0.125 mm. Proposed antennas which operates at Bluetooth band are a rectangular loop antenna and a loop antenna with inverted-L type stub. We compared the input matching and radiation characteristics of the proposed antennas under eight kinds of bending conditions.

Influences of Bending Temperature on the I$_{c}$ Degradation Behavior of Bi-2223 tapes under Bending

  • Shin Hyung Seop;Dizon John Ryan C.;Katagiri Kazumune;Kuroda Tsuneo
    • Progress in Superconductivity and Cryogenics
    • /
    • v.7 no.2
    • /
    • pp.11-15
    • /
    • 2005
  • The I$_{c}$ degradation behavior of Bi-2223 tapes bent at RT and 77K were investigated using the bending device invented by Goldacker. Test results on fixing the tape at RT and 17K showed no difference. At 17K and RT bending, the critical strain was 0.67 and 0.50$\%$, respectively, for the VAM-l tape. For the AMSC tape, it was 0.94 and 0.88$\%$, respectively. These results show that there is additional residual stress in the superconducting filaments to be bent at 17K which shifts the formation of cracks into smaller bending radii. This was proved by computational analysis based on the mixture rule of composites. For the VAM-l tape, the Ie degradation behavior using the Goldacker type device shifted to higher strain levels at about 0.5$\%$, as compared with the FRP sample holders which have a critical bending strain of about 0.24$\%$. Also, for the externally reinforced AMSC tape, Ie degradation using the Goldacker type device begins at a higher strain level, at 0.88$\%$ as compared with using FRP sample holders, at 0.74$\%$. The difference between both cases can be explained by the tensile' and thermal stresses that the tapes were subjected to during fixing (soldering) when the FRP sample holders were used.

Design and Performance Evaluation of Dimpled EGR Cooler (딤플형 EGR 냉각기의 설계 및 성능평가)

  • Seo, Young-Ho;Lee, Hyun-Min;Heo, Seong-Chan;Ku, Tae-Wan;Song, Woo-Jin;Kang, Beom-Soo;Kim, Jeong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.3
    • /
    • pp.291-298
    • /
    • 2010
  • A conventional EGR cooler, which is used in an EGR system of an automobile diesel engine, has a low heat-exchange efficiency. To maximize the heat transfer between the exhaust gas and coolant, dimples are formed on the surface of heat exchange tubes. When designing the dimpled EGR cooler, the net heat transfer areas in the conventional and dimpled tube-type EGR coolers are compared. Structural integrity evaluations are also performed by combining finite element analysis with a homogenization method. Subsequently, the process of manufacturing the dimpled tube, i.e., the formation of dimples, edge bending, center v-notch bending, compression, and plasma welding, is established and carried out. Thus, the dimpled EGR cooler is developed, and its performance is verified.

Comparison of Peak EMG Amplitude on Low Back Muscles according to Asymmetric Load Center of Gravity and Trunk Lateral Bending while Lifting (들기 작업시 중량물의 비대칭 무게중심 및 상체 옆으로 기울임에 따른 허리근육의 Peak EMG 진폭 비교)

  • Han, Seung Jo;Kim, Sun-Uk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.10
    • /
    • pp.4629-4635
    • /
    • 2012
  • This study was aimed at the relationship between peak EMG amplitude on low back muscles acting on L5/S1 and load center of gravity, trunk lateral bending while lifting an object. Musculoskeletal disorders including low back pain can occur even when handling heavy objects only once as well as when doing non-heavy materials repeatedly. 11 male subjects with average 23 age were required to lift a 15.8kg object symmetrically three times. Peak EMG amplitudes on 6 muscles related with L5/S1 were recorded and analyzed. The lifting conditions consisted of lifting symmetric load with no trunk lateral bending, asymmetric load with no trunk lateral bending, and asymmetric load with trunk lateral bending to the load center of gravity within an object. The results showed that peak EMG amplitude on back muscles contralateral to load center of gravity was observed greater in comparison with the symmetric load. Also, in case of lifting asymmetric load the posture with trunk lateral bending increased peak EMG amplitude on muscles contralateral to load center of gravity more than with no trunk lateral bending. This research can be used as one administrative intervention in order to reduce the low back pain incidence with suggesting workers that they keep the trunk not bending to load center of gravity if possible when lifting a heavy asymmetric object.

The Stress Distribution of Indium-tin-oxide (ITO) film on flexible Display Substrate by Bending (Flexible Display 기판 위의 Bending에 따른 ITO 필름의 Stress 분포)

  • 박준백;황정연;서대식;박성규;문대규;한정인
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.12
    • /
    • pp.1115-1120
    • /
    • 2003
  • In this paper, we investigated the position dependent stress distribution of indium-tin-oxide (ITO) film on Polycarbonate (PC) substrate by external bending force. It was found that there are the maximum crack density at the center position and decreasing crack density as goes to the edge, In accordance with crack distribution, it was observed that the change of electrical resistivity of ITO islands is maximum at the center and decrease as goes to the edge. From the result that crack density is increasing at same island position as face plate distance (L) decreases, it is evident that the more stress is imposed on same island position as L decreases.