• Title/Summary/Keyword: L-Proline

Search Result 328, Processing Time 0.025 seconds

Chemical Constituents in Polygonum multiflorum Thunberg Root Based on Various Dry Methods (건조방법에 따른 적하수오(Polygonum multiflorum Thunberg)의 이화학적 성분)

  • Oh, Junseok;Hong, Jae-Heoi;Park, Tae-Young;Yun, Kyeong-Won;Kang, Kyeong-Yun;Jin, Seong-Woo;Kim, Kyung-Je;Ban, Seung-Eon;Im, Seung-bin;Koh, Young-Woo;Seo, Kyoung-Sun
    • Korean Journal of Plant Resources
    • /
    • v.31 no.4
    • /
    • pp.283-293
    • /
    • 2018
  • This study was performed to analysis of chemical constituent in Polygonum multiflorum root (PMR) by different dry methods (hot-air dry, shade dry, and freeze dry). The results are summarized as followings; major free sugar were detected fructose, glucose, and sucrose in dried PMR based on various dry methods. The highest content of free sugars was found in freeze dried PMR. The four organic acids were detected in dried PMR by HPLC analysis. The content of oxalic acid in shade dried PMR was higher than the dried PMR by different dry methods. The content of total amino acid and essential amino acids were high in the orders of freeze drying > shade drying > hot-air drying. The potassium and magnesium levels of freeze dried PMR was significantly higher than the other drying method of PMR. Whereas the calcium and sodium levels were higher in hot-air dried PMR. The major fatty acids were determined the linoleic acid in PMR by different dry methods.

The Ripening of Camembert Cheese Made with Mucor Miehei Rennet (Mucor Miehei 응유효소(凝乳酵素)로 제조(製造)한 Camembert Cheese의 숙성(熟成)에 관(關)한 연구(硏究))

  • Park, Mooh Il;Kim, Jong Woo
    • Korean Journal of Agricultural Science
    • /
    • v.16 no.2
    • /
    • pp.179-200
    • /
    • 1989
  • Mucor miehei rennet(MR) was added as calf rennet(CR) substitutes in the fixed amounts of mixed rennets in making Camembert cheese. The conditions in the variations of chemical composition: water-soluble nitrogen, non-caseinic nitrogen, non-proteinic nitrogen, amino nitrogen, ammoniacal nitorgen, electrophoresis, molecular fractionation, mineral distribution, texture characterisitics, free amino acids and free fatty acids, were checked up with the sensory test and the chesse yields at each ripening period. The results obtained by investigating the utility of Mucor rennet were summarized as follows: 1. CR chesse, MR cheese and the mixed-rennet chesse failed to show any significant difference in their yields of 15%. 2. The contents of protein, fat and ash in MR cheese gave lower value than CR cheese did and with progress of ripening lactose decreased rapidly after 14 days of ripening. The difference among the rate of addition of mucor rennet was not recognized. 3. The WSN contents of 5 fresh sample chesse were from 14.7% to 17.3% and WSN increased from 39.7% to 41.0% with progress of ripening. After 21 days of ripening MR chesse had more WSN than CR cheese did. In NCN and ammoniacal nitrogen MR cheese showed higher value. 4. As the ripening progressed, MR chesse showed more cystein, phenylalanine and proline than CR chesse did but it failed to show any increase in aspartic acid, threonine and glutamic acid etc. 5. In the content of free fatty acid MR chesse showed higher value than CR cheese did and with the progress of ripening fatty acids increased from 8.36 mEq to 26.36 mEq but did not show any significant difference in the cheese types by the coagulant ratio. 6. Ca contents in the sample chesse were 0.238-0.27%, Mg 0.019-0.022%, Na 0.910-1.047%, and K 0.175-0.200%. The important non-sedimentable Ca in casein remained from 61 % to 77% without regard the ripening periods and added-rennets and Mg remained from 59.1% to 92.5% in non-sedimentable and water-soluble conditions. 7. In the fractionation of protein by ultrafilteration, MW> $5{\times}10^4$ decresed from 95% at the beginning period of ripening to 45% and MW< $10^4$ increased from 0.2% to 38% and definite caseinolysis was shown in all samples. 8. All the cheese showed to different electrophoretic patterns for the added-amounts of mucor rennet in the 14 days of ripenig. In the 28 days or ripening, MR cheese kept some bands on the patterns compared with CR cheese. 9. In vitro digestibility increased from 81.48-94.81 % to 94.47-98.61% but failed to show any significant difference in the cheese types by the coagulant ratio. 10. In hardness, MR cheese showed lower value compared with CR cheese as the ripening progressed. 11. The results of the sensory test failed to show any difference in flora rind, feelings in mouth and hands, deep structure, flavor and bitterness between CR Camembert cheese and MR Camembert chesse.

  • PDF

Energy and Ileal Digestible Amino Acid Concentrations for Growing Pigs and Performance of Weanling Pigs Fed Fermented or Conventional Soybean Meal

  • Wang, Y.;Lu, W.Q.;Li, D.F.;Liu, X.T.;Wang, H.L.;Niu, S.;Piao, X.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.5
    • /
    • pp.706-716
    • /
    • 2014
  • A new strategy of co-inoculating Bacillus subtilis MA139 with Streptococcus thermophilus and Saccharomyces cerevisiae was used to produce fermented soybean meal (FSBM). Three experiments were conducted to determine the concentration of digestible energy (DE) and metabolizable energy (ME) (Exp. 1), apparent ileal digestibility (AID) and standardized ileal digestibility (SID) of amino acids (AA) (Exp. 2), and feeding value (Exp. 3) of FSBM produced by this new strategy (NFSB) compared with soybean meal (SBM) and conventionally available FSBM (Suprotein). In Exp. 1, twenty-four barrows (initial body weight [BW] of $32.2{\pm}1.7kg$) were randomly allotted to 1 of 4 diets with 6 replicates per diet. A corn basal diet and 3 diets based on a mixture of corn and 1 of 3 soybean products listed above were formulated and the DE and ME contents were determined by the difference method. The results showed that there were no differences in DE and ME between SBM and either FSBM product (p>0.05). In Exp. 2, eight barrows (initial BW of $26.8{\pm}1.5kg$) were fitted with ileal T-cannulaes and used in a replicated $4{\times}4$ Latin square design. Three corn-starch-based diets were formulated using each of the 3 soybean products as the sole source of AA. A nitrogen-free diet was also formulated to measure endogenous losses of AA. The results showed that the SID of all AA except arginine and histidine was similar for NFSB and SBM (p>0.05), but Suprotein had greater (p<0.05) SID of most AA except lysine, aspartate, glycine and proline than NFSB. In Exp. 3, a total of 144 piglets (initial BW of $8.8{\pm}1.2$ kg) were blocked by weight and fed 1 of 4 diets including a control diet with 24% SBM as well as diets containing 6% and 12% NFSB or 12% Suprotein added at the expense of SBM. During d 15 to 28, replacing SBM with 6% NFSB significantly improved average daily gain (ADG) and average daily feed intake (ADFI) (p<0.05) for nursery piglets. During the overall experiment, ADG of piglets fed diets containing 6% NFSB was significantly greater (p<0.05) than that of piglets fed SBM. In conclusion, fermentation with the new strategy did not affect the energy content or the AID and the SID of AA in SBM. However, inclusion of 6% NFSB in diets fed to nursery piglets improved performance after weaning likely as a result of better nutritional status and reduced immunological challenge.

Regulation of Chilling Tolerance in Rice Seedlings by Plant Hormones

  • Chu, Chun;Lee, Tse-Min
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.37 no.3
    • /
    • pp.288-298
    • /
    • 1992
  • Since the major important factors limiting plant growth and crop productivity are environmental stresses, of which low temperature is the most serious. It has been well known that many physiological processes are alterant in response to the environmental stress. With regard to the relationship between plant hormones and the regulation of chilling tolerance in rice seedlings, the major physiological roles of plant hormones: abscisic acid, ethylene and polyamines are evaluated and discussed in this paper. Rice seedlings were grown in culture solution to examine the effect of such plant hormones on physiological characters related to chilling tolerance and also to compare the different responses among tested cultivars. Intact seedlings about 14 day-old were chilled at conditions of 5$^{\circ}C$ and 80% relative humidity for various period. Cis-(+)-ABA content was measured by the indirect ELISA technique. Polyamine content and ethylene production in leaves were determined by means of HPLC and GC respectively. Chilling damage of seedlings was evaluated by electrolyte leakage, TTC viability assay or servival test. Our experiment results described here demonstrated the physiological functions of ABA, ethylene, and polyamines related to the regulation of chilling tolerance in rice seedlings. Levels of cis-(+)-ABA in leaves or xylem sap of rice seedlings increased rapidly in response to 5$^{\circ}C$ treatment. The tolerant cultivars had significant higher level of endogenous ABA than the sensitive ones. The ($\pm$)-ABA pretreatment for 48 h increased the chilling tolerance of the sensitive indica cultivar. One possible function of abscisic acid is the adjustment of plants to avoid chilling-induced water stress. Accumulation of proline and other compatible solutes is assumed to be another factor in the prevention of chilling injuies by abscisic acid. In addition, the expression of ABA-responsive gene is reported in some plants and may be involving in the acclimation to low temperature. Ethylene and its immediate precusor, 1-amincyclopropane-1-carboxylic acid(ACC) increased significantly after 5$^{\circ}C$ treatment. The activity of ACC synthase which converts S-adenosylmethionine (SAM) to ACC enhanced earlier than the increase of ethylene and ACC. Low temperature increased ACC synthase activity, whereas prolonged chilling treatment damaged the conversion of ACC to ethylene. It was shown that application of Ethphon was beneficial to recovering from chilling injury in rice seedlings. However, the physiological functions of chilling-induced ethylene are still unclear. Polyamines are thought to be a potential plant hormone and may be involving in the regulation of chilling response. Results indicated that chilling treatment induced a remarkable increase of polyamines, especially putrescine content in rice seedlings. The relative higher putrescine content was found in chilling-tolerant cultivar and the maximal level of enhanced putrescine in shoot of chilling cultivar(TNG. 67) was about 8 folds of controls at two days after chilling. The accumulation of polyamines may protect membrane structure or buffer ionic imbalance from chilling damage. Stress physiology is a rapidly expanding field. Plant growth regulators that improve tolerance to low temperature may affect stress protein production. The molecular or gene approaches will help us to elucidate the functions of plant hormones related to the regulation of chilling tolerance in plants in the near future.

  • PDF

The Nutritional Components of Olive Flounder (Paralichthys olivaceus) Fed Diets with Yuza (Citrus junos Sieb ex Tanaka) (유자 첨가 사료로 사육된 넙치의 영양성분)

  • Kim, Heung-Yun;Kim, Eun-Heui;Kim, Do-Hyung;Oh, Myung-Joo;Shin, Tai-Sun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.42 no.3
    • /
    • pp.215-223
    • /
    • 2009
  • This study was conducted to investigate the effect of diets supplemented with different levels (0, 2.5, 5.0, and 7.5%) of yuza (Citrus junas Sieb ex Tanaka) on nutritional composition of olive flounder. Four groups of fish (242.2$\pm$14.2 g) were fed to apparent satiation twice daily for 4 months. There were no significant differences in proximate composition among the treatment groups (P<0.05). Vitamin C content in flounder muscle was higher in the yuza-added groups than in the control group, and the content among the treatment groups increased as amount of yuza added to diets increased (P<0.05). Of the eight organic acids in flounder muscle, lactic acid was predominant, followed by oxalic acid, succinic-acid, tartaric acid, and acetic acid. Flounders fed 2.5% yuza diet had the highest lactic acid content of all treatments. Four sugars were found in all groups and glucose was the major sugar. Glucose and ribose were detected as the highest sugars in the 2.5% treatment, while maltose and galactose were the dominant sugars in the 5.0% treatment. The abundant fatty acids in fed flounders were 22:6n-3 (DHA), 16:0, and l8:1n-9, which were composed of over 60% of total fatty acids. The control and the 7.5% treatment group had higher 22:6n-3 (DHA) content than the other groups. Major amino acids in samples were glutamic acid, aspartic acid, lysine, leucine, valine, arginine, and alanine. The 2.5% yuza treatment had the highest content of total amino acids and essential amino acids. There were little differences in the free amino acid compositions among the treatments. However, taurine was the predominant amino acid and made up over 47% of total free amino acids. The 2.5% added yuza group contained higher amount of sweet amino acids such as alanine, serine, proline, glycine than the other groups. The addition of yuza to diet of olive flounder had no or little effect on the nutritional components of olive flounder except for vitamin C. However, the 2.5% yuza added group had the highest nutritional values of the treatment groups.

Chemical Comparison of Germinated- and Ungerminated-Safflower(Carthamus tinctorius) Seeds (홍화(Carthamus tinctorius L.)씨와 발아홍화씨의 화학성분 비교)

  • Kim, Eun-Ok;Lee, Ki-Teak;Choi, Sang-Won
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.37 no.9
    • /
    • pp.1162-1167
    • /
    • 2008
  • This study was to investigate the chemical compositions of germinated (GSS)- and ungerminated (UGSS)-safflower (Carthamus tinctorius) seeds. GSS had higher amount of sugar and crude fiber than UGSS, but less amounts of protein and lipid. Levels of $\alpha$-tocopherol and essential amino acids of GSS were higher than those of UGSS, although there are no difference in fatty acid composition between GSS and UGSS. Among the nine phenolic compounds detected, five phenolic compounds, except for two lignans and two flavonoids, were found in both GSS and UGSS. Four serotonin derivatives accounted for about 80 per cent of total phenolic compounds, and levels of five phenolic compounds decreased slightly with germination. These results suggest that germination may enhance the functionality of safflower seed by increasing nutritional compositions and by decreasing phenolic compounds with bitter taste and cathartic effects.

Chemical compositions and antioxidant characteristics of Korean maize hybrids in different cropping seasons

  • Kim, Mi-Jung;Jung, Gun-Ho;Son, Beom-Young;Woo, Koan Sik;Sim, Eun-Yeong;Jeon, Yong-Hee;Lee, Choon-Ki
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.289-289
    • /
    • 2017
  • The climate change impact has facilitated double cropping system on maize production in Korea. The objectives of this study were to investigate the chemical composition changes according to the sowing dates on double cropping in 8 dent type, 2 intermediate type, and 4 semiflint type of Korean maize (Zea mays L.) hybrids and evaluate its antioxidant characteristics. Fourteen maize hybrids were sown on April 5 and July 5 of 2015. The average crude protein contents in dent and semiflint type maize sown on April 5 were higher than those sown on July 5 (p<0.05). There was no significant difference in average of total amino acid contents in all types of maize according to the sowing dates. Major amino acid in maize hybrids were glutamic acid followed by proline, alanine, and aspartic acid, which has no significant difference according to the sowing dates. The average crude fat contents in semiflint and intermediate type maize sown on April 5 were higher than those sown on July 5 (p<0.05). The average composition of saturated fatty acid in dent type maize sown on April 5 was higher than those sown on July 5. However, the average unsaturated fatty acid composition showed the opposite result (p<0.05). Fatty acids were mainly composed of linoleic acid (C18:2) and oleic acid (C18:1) in maize hybrids. The average oleic acid percentage of dent and semiflint type maize sown on April 5 were higher than those sown on July 5, while the average linoleic acid was lower. The average amylose content of all types of maize sown on April 5 was higher than those sown on July 5. On the other hands, the average carotenoid contents had the opposite result (p<0.05). There were no significant differences in total average of polyphenol contents and DPPH and ABTS radical scavenging activities in all types of maize based on the sowing date. Total polyphenol contents had positive correlation with DPPH (r=0.33, p<0.01) and ABTS (r=0.50, p<0.0001) radical scavenging activities. In conclusion, the kernel composition affects maize quality. These data are useful for maize breeding program and cultivation and food processing industry.

  • PDF

Enhanced drought and oxidative stress tolerance in transgenic sweetpotato expressing a codA gene (CodA 고발현 형질전환 고구마의 산화 및 건조 스트레스 내성 증가)

  • Park, Sung-Chul;Kim, Myoung Duck;Kim, Sun Ha;Kim, Yun-Hee;Jeong, Jae Cheol;Lee, Haeng-Soon;Kwak, Sang-Soo
    • Journal of Plant Biotechnology
    • /
    • v.42 no.1
    • /
    • pp.19-24
    • /
    • 2015
  • Glycine betaine (GB) is one of the compatible solutes that accumulate in the chloroplasts of certain halotolerant plants under salt or cold stress. The codA gene for choline oxidase, the enzyme that converts choline into GB, has been cloned from a soil bacterium Arthrobacter globiformis. We generated transgenic sweetpotato plants [Ipomoea batatas (L.) Lam] expressing codA gene in chloroplasts under the control of the SWPA2 promoter (referred to as SC plants) and evaluated SC plants under oxidative and drought stresses. SC plants showed enhanced tolerance to methyl viologen (MV)-mediated oxidative stress and drought stress due to induced expression of codA. At $5{\mu}M$ of MV treatment, all SC plants showed enhanced tolerance to MV-mediated oxidative stress through maintaining low ion leakage and increased GB levels compared to wild type plants. When plants were subjected to drought conditions, SC plants showed enhanced tolerance to drought stress through maintaining high relative water contents and increased codA expression compared to wild type plants. These results suggest that the SC plants generated in this study will be useful for enhanced biomass production on global marginal lands.

Comparisons of biological activities and amino acid contents of edible mushrooms extracted using different solvents (주요 식용버섯의 추출용매에 따른 생리활성 및 아미노산 성분 차이 비교)

  • An, Gi-Hong;Han, Jae-Gu;Cho, Jae-Han
    • Journal of Mushroom
    • /
    • v.18 no.1
    • /
    • pp.53-62
    • /
    • 2020
  • The aims of this study were to investigate the biological activities and amino acid contents of fermentation ethanol and sodium extracts from five edible mushrooms (Pleurotus eryngii, Pleurotus ostreatus, Flammulina velutipes, Lentinula edodes, and Agaricus bisporus). DPPH radical scavenging activities in 30% fermentation ethanol extracts of P. eryngii and P. ostreatus were significantly higher than those in sodium extracts (p<0.05). Nitrite scavenging activities were also higher in the 30% fermentation ethanol extracts of P. eryngii and P. ostreatus. The total polyphenol contents of P. eryngii, P. ostreatus, and F. velutipes were high in 70% fermentation ethanol extracts. The analysis of amino acids revealed that the 70% fermentation ethanol extract of P. eryngii had the highest content of total amino acids, with higher phenylalanine, leucine, isoleucine, valine, and tyrosine contents higher than the other extracts. In all the extracts of P. ostreatus, glutamic acid was the most abundant amino acid. The 5% NaCl and 30% fermentation ethanol extracts of F. velutipes contained abundant glutamic acid, alanine, and proline. Glutamic acid was the most abundant amino acid in the 70% and 30% fermentation ethanol extracts of L. edodes. In the 5% NaCl extracts of A. bisporus, glutamic acid and alanine were abundant. Thus, maximum biological and nutritional ingredients can be extracted using the optimal solvents for each type of mushroom.

Study on the Dextran and the Inner Structure of Jeung-Pyun (Korea Rice Cake) on Adding Oligosaccharide (올리고당 첨가 증편 발효 중 Dextran 형성과 증편의 내부구조에 관한 연구)

  • 이은아;우경자
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.12 no.1
    • /
    • pp.38-46
    • /
    • 2002
  • This study was carried out in order to investigate dextran formation and internal structure during fermentation of the oligosaccharide Jeung-Pyun. The dextran and sugar reducing contents of Jeung-Pyun batter and the specific volume and the internal structure of Jeung-Pyun were analyzed as a function of fermentation time. The specific volume of Jeung-Pyun peaked at the 7th hour of fermentation. The dextran content of Jeung-Pyun batters peaked at the 7~13th hour of fermentation, and Fructooligosaccharide Jeung-Pyun had the least peak value. Reducing sugar content of Jeung-Pyun batters slowly decreased as fermentation progressed. From the air pore size and distribution of Jeung-Pyun observed by SEM, the sucrose Jeung-Pyun fermented for 3~7 hours and oligosaccharide one fermented for 7 hours were judged as the best. It was concluded that dextran may be formed by fermentation of oligosaccharides as well as sucrose and dextran has a significant role on the volume expansion of Jeung-Pyun.

  • PDF