• Title/Summary/Keyword: L-Feed

Search Result 1,801, Processing Time 0.027 seconds

Metabolic Responses of Activated Sludge to Pentachlorophenol in a SBR System (SBR 처리 장치에서 활성 슬럿지의 대사에 미치는 Pentachlorophenol의 독성 효과)

  • KIM Sung-Jae;Benefield Larry D.
    • Journal of Aquaculture
    • /
    • v.6 no.4
    • /
    • pp.323-338
    • /
    • 1993
  • The primary objective of this study was to examine the toxic effects of PCP on activated sludge and to analyze its metabolic responses while treating wastewater containing pentachlorophenol (PCP) in a sequencing batch reactor (SBR) system operating under different control strategies. This study was conducted in two phases 1 and 2 (8-hr and 12-hr cycles). Each phase was operated with two control strategies I and II. Strategy I (reactor 1) involved rapid addition (5 minutes to complete) of substrate to the reactor with continuous mixing but no aeration for 2 hours. Strategy II (reactor 2) involved adding the feed continuously during the first 2 hours of the cycle when the system was mixed but not aerated. During both phases each reactor was operated at a sludge age of 15 days. The synthetic wastewater was used as a feed. The COD of the feed solution was about 380 mg/L. After the reference response for both reactors was established, the steady state response of each system was established for PCP feed concentrations of 0.1 mg/L, 1.0 mg/L, and 5.0 mg/L in SBR systems operating on both 8-hr and 12-hr cycles. Soluble COD removal was not inhibited at any feed PCP concentrations used. At 5.0 mg/L feed PCP concentration and in SBR systems operating on phase 2, the concentrations or ML VSS were decreased; selective pressure on the mixed biomass might be increased, narrowing the range of possible ecological responses; the settleability of activated sludge was poor; the SOURs were increased, showing that the systems were shocked. Nitrification was made to some extent at all concentrations of feed PCP in SBR systems operating on phase 2 whereas in SBR systems operating on phase 1 little nitrification was observed. Then, nitrification will be delayed as much as soluble COD removal is retarded due to PCP inhibition effects. Enhanced biological phosphorus removal occurring in the system operating with control strategy I during phase 1 of this work and in the presence of low concentrations of PCP was unreliable and might cease at anytime, whereas enhanced biological phosphorus removal occurring in the system operating with either control strategy I or II during phase 2 of this work and in the presence of feed PCP concentrations up to 1.0 mg/L was reliable. When, however, such processes were exposed to 5.0 mg/L PCP dose, enhanced phosphorus removal ceased and never returned.

  • PDF

Simulation of D-limonene Separation from Mandarine Extract in Simulated Moving Bed (SMB) (감귤 추출물로부터 D-리모넨 분리를 위한 유사 이동층 크로마토그래피(SMB) 전산모사)

  • Kim, Tae Ho;Ko, Kwan Young;Kim, In Ho
    • Korean Chemical Engineering Research
    • /
    • v.54 no.1
    • /
    • pp.81-88
    • /
    • 2016
  • Limonene is orange flavored natural material that is mainly contained in mandarine and lemon peels. D-limonene was extracted from cold-storaged mandarine peel by using Soxhlet extractor at $120^{\circ}C$ for 2 hours with ethanol as solvent. Henry constants of d-limonene and impurity were calculated as $H_{Lim}=8.55$ and $H_{imp}=0.223$ from the result of HPLC analysis. 4-bed SMB of limonene simulation with $0.46{\times}25cm$ columns was conducted by using Aspen chromatography program. Then effective condition for purity was found by changing $m_2$ and $m_3$ values in triangle diagram. The highest purity was 98.59% at $m_2=2.57$, $m_3=9.55$. For this case, feed, desorbent, extract, and raffinate flow rates were 1 mL/min, 1.19 mL/min, 0.857 mL/min and 1.34 mL/min, respectively. Scale-up simulation was also conducted by increasing column diameter from 0.46 cm to 1.6 cm for getting the same efficiency. The increased flow rates were 12 mL/min, 14 mL/min, 10 mL/min, and 16 mL/min for feed, desorbent, extract, and raffinate. It was possible to scale-up with maintaining same limonene purity because linear isotherms of limonene and impurity were assumed.

Nocturnal Light Pulses Lower Carbon Dioxide Production Rate without Affecting Feed Intake in Geese

  • Huang, De-Jia;Yang, Shyi-Kuen
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.3
    • /
    • pp.390-395
    • /
    • 2016
  • This study was conducted to investigate the effect of nocturnal light pulses (NLPs) on the feed intake and metabolic rate in geese. Fourteen adult Chinese geese were penned individually, and randomly assigned to either the C (control) or NLP group. The C group was exposed to a 12L:12D photoperiod (12 h light and 12 h darkness per day), whereas the NLP group was exposed to a 12L:12D photoperiod inserted by 15-min lighting at 2-h intervals in the scotophase. The weight of the feed was automatically recorded at 1-min intervals for 1 wk. The fasting carbon dioxide production rate ($CO_2$ PR) was recorded at 1-min intervals for 1 d. The results revealed that neither the daily feed intake nor the feed intakes during both the daytime and nighttime were affected by photoperiodic regimen, and the feed intake during the daytime did not differ from that during the nighttime. The photoperiodic treatment did not affect the time distribution of feed intake. However, NLPs lowered (p<0.05) the mean and minimal $CO_2$ PR during both the daytime and nighttime. Both the mean and minimal $CO_2$ PR during the daytime were significantly higher (p<0.05) than those during the nighttime. We concluded that NLPs lowered metabolic rate of the geese, but did not affect the feed intake; both the mean and minimal $CO_2$ PR were higher during the daytime than during the nighttime.

Characteristics of digestive enzyme activity, antibiotic resistance, and pathogenicity of bacteria inhabited in animal feed resources (사료자원에 서식하는 세균의 소화효소활성, 항생제내성 및 병원성에 관한 특성)

  • Yi, Kwon Jung;Cho, Sang Seop;Kim, Soo-Ki
    • Korean Journal of Veterinary Service
    • /
    • v.40 no.2
    • /
    • pp.119-131
    • /
    • 2017
  • Among different types of spoilage, microbial contamination can cause feed decomposition, which results in decreases in feed intake and productivity, infection, and breeding disorder. During the storage time, various microbes have a chance to inoculate with depreciation of feed and to infect the animals. We investigated bacteria that inhabit diverse feed ingredients and complete feed which have been stored for a few months. We isolated and identified 30 genera and 62 species of bacteria. Among these 62 species, 21 species were of non-pathogenic bacteria, 18 species were of pathogenic bacteria, 9 species were of opportunistic pathogens, and 14 species were of unknown bacteria. Pantoea allii and 24 species showed proteolytic enzyme activity. We also confirmed that 6 species including Pseudomonas psychrotolerans showed ${\alpha}$-amylase activity, and 29 species including Burkholderia vietnamiensis showed cellulase activity. Microbacterium testaceum and 3 species showed resistance to Ampicillin, Kanamycin, Streptomycin, Gentamicin, Carbenicillin, and Erythromycin ($50{\mu}g/mL$). Using mealworm larvae (Tenebrio molitor L.) as a model for pathogenicity, we confirmed that 8 species including Staphylococcus xylosus had pathogenicity for mealworm larvae. Especially, Enterobacter hormaechei, Staphylococcus xylosus, and Staphylococcus hominis were reported as being pathogenic for humans. This research suggests that hygienic management of animal feed is essential because beneficial and harmful bacteria can inhabit animal feed differently during storage and distribution.

Estimation of Rumen Microbial Protein Supply Using Urinary Purine Derivatives Excretion in Crossbred Calves Fed at Different Levels of Feed Intake

  • Singh, M.;Sharma, K.;Dutta, N.;Singh, P.;Verma, A.K.;Mehra, U.R.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.10
    • /
    • pp.1567-1574
    • /
    • 2007
  • A study was carried out to study the response of total purine derivatives (PD) excretion in urine to determine microbial N (MN) supply at four fixed levels of feed intake (namely 95, 80, 60 and 40% of voluntary intake). The crossbred (CB) calves were allocated according to a $4{\times}4$ Latin Square Design and fed wheat straw and concentrate (1:1). The rate of PD excretion (mmol/d) as a linear function of feed intake was 15.85/kg DMI and 20.12/kg DOMI. Based on the endogenous and PD excretion rates obtained in this study, a relationship between daily urinary PD excretion (Y, mmol) and daily microbial protein supply (X, mmol) was developed for crossbred calves as Y = 0.83X+0.296 kg $W^{0.75}$. The derived microbial N values using this equation differed (p<0.001) among the 4 groups and was the highest in L-95 followed by L-80, L-60 and L-40. The relationship between urinary nitrogen loss (Y, g/d) and DOMI (X, kg/d) was established as: Y = 6.038X+21.753 ($r^2$ = 0.663, p<0.01). When urinary excretion of PD (Y, mmol/d) was plotted against intake of DM and DOM (X, kg/d), the equations obtained were: Y = 7.1711X+8.674 ($r^2$ = 0.889, p<0.01) and Y = 12.434X+7.683 ($r^2$ = 0.896, p<0.01), respectively. The proportional contribution of allantoin and uric acid to total PD remained stable irrespective of level of feed intake. Similarly, urinary excretion of creatinine did not differ (p>0.05) between animals fed at different levels. The MN supply was the highest to animals at intake levels L-95, and decreased linearly with corresponding decrease in feed intake. However, the MN supply when expressed per kg DOMI remained statistically (p>0.05) similar irrespective of level of intake. The results revealed that the excretion of urinary purine derivatives were positively correlated with the level of feed intake as well as rumen microbial supply and thus it could be a good indicator for measuring the microbial protein supply and nutritional status of animals.

Growth Kinetics and Sporulation of Bacillus thuringiensis in High Cell Density Culture (고농도 세포배양에서 Bacillus thuringiensis의 세포 성장과 포자 형성 속도)

  • 강병철;장호남
    • KSBB Journal
    • /
    • v.16 no.1
    • /
    • pp.30-35
    • /
    • 2001
  • High cell density culture of Bacillus thuringiensis was conducted in fed-batch culture and TCRC using a bioreactor incorporating ceramic membrane filter. Cell growth of B. thuringiensis in fed-batch culture increased linearly, which was well matched by the results of cell growth modeling. In spite of the slower growth rate during fed-batch culture, no spore formation was observed, which was contrary to the results of continuous culture. Changing culture mode to batch culture after fed-batch operation induced a 2.7$\times$$10^9$ CFU/mL spore concentration using a 300 g/L glucose feed concentration. In TCRC operation incorporating ceramic filter within the bioreactor, the effect of glucose feed concentrations on the cell growth and spore formation of B. thuringiensis was determined. A maximum cell concentration of 1.8$\times$$10^{10}$ CFU/ml, which corresponds to 82.6 g-cell/L, was obtained in the TCRC using a 50 g/L glucose feed concentration. In the TCRC, cell growth increased linearly and glucose concentration was limited, which agreed well with the results of cell growth modeling. No spore formation was observed except when 1 g/L of glucose was fed. Changing to batch culture induced a 1.2$\times$$10^{10}$ CFU/mL of spore concentration, which was the highest spore concentration obtained among the various culture modes examined. The optimal glucose feed rate was found to be 0.55 g-glucose/h.

  • PDF

A study of 10GHz Slot Patch Antenna for Wireless Communication (무선 통신용 10GHz 대역 슬롯 패치 안테나 연구)

  • Park, Yong-Wook
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.4
    • /
    • pp.599-604
    • /
    • 2021
  • In the information age, internet was developed from the wired access to the wireless Internet access. When a surge in demand for wireless Internet access, efficiency and performance of 2.4 and 5GHz band which leads to saturation of the communication was significantly fall. In this paper, we studied the design and fabrication of slot patch antenna to be used in wireless communication systems operating at around 10GHz band. To obtain optimal antenna parameters such as patch size, inter patch space, sL, sW, feed L, feed w, slot patch antenna was simulated by HFSS(High Frequency Structure Simulator). From these parameters, slot and patch antenna is fabricated using FR-4 substrate of dielectric constant 4.4. The characteristics of fabricated antenna were analyzed by network analyzer. The fabricated slot patch antenna showed a center frequency as 10.23GHz, the minimum return loss as -32dB, and -10dB bandwidth as 420MHz respectively.

The Effect of Operating Conditions on Cross-Flow Ultrafiltration with using Polyethylene Glycol (Polyethylene Glycol을 이용한 Cross-Flow Ultrafiltration에 있어서 운전조건의 영향)

  • Yoo, Kun-Woo;Seo, Hyung-Joon
    • Applied Chemistry for Engineering
    • /
    • v.9 no.7
    • /
    • pp.950-955
    • /
    • 1998
  • The objective of this study was to investigate the effect of running time, operating pressure, feed concentration and circulation rate on the permeation flux and the rejection rate in cross-flow ultrafiltration of polyethylene glycol(PEG) solution of molecular weight($M_w$) 8000 and 20000. The membranes used for this study were MWCO(Molecular Weight Cut-off) of 6 K and 20 K. The experiments were performed at the operating pressures of 7, 14 and 28 psi, the circulation rates of 1000 mL/min and 2000 mL/min, and the feed concentration of 100 mg/L and 1000 mg/L. At a constant pressure, the permeation flux and the observed rejection($R_o$) appeared to be approximately constant within the range of running time, 0~480 min. The permeation flux increased with increasing the operating pressure, and it increased with decreasing the feed concentration and decreasing Mw of PEG at a given pressure. On the other hand, $R_o$ decreased slightly with increasing the operating pressure. However, $R_o$ increased with increasing the feed concentration and increasing of $M_w$ of PEG at a given pressure. The variation in circulation rates did not cause any significant influence on the permeation flux. Increasing of circulation rate caused the increase of $R_o$, and $\alpha$ was increased substantially with the decrease of $M_w$ of PEG. The dimensionless parameter. permeability ratio($\alpha$), which was used to investigate flux-pressure behavior, was increased with the increase in circulation rate and operating presure. The value of $\alpha$ was less than 1 in all cases. The estimated intrinsic rejection(R). which was obtained from mass transfer coefficient, was decreased with the increase of operating pressure. However R increased with the increase of linear velocity of feed and $M_w$ of PEG.

  • PDF

Effect of Dietary L-ascorbic Acid (L-AA) on Production Performance, Egg Quality Traits and Fertility in Japanese Quail (Coturnix japonica) at Low Ambient Temperature

  • Shit, N.;Singh, R.P.;Sastry, K.V.H.;Agarwal, R.;Singh, R.;Pandey, N.K.;Mohan, J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.7
    • /
    • pp.1009-1014
    • /
    • 2012
  • Environmental stress boosts the levels of stress hormones and accelerates energy expenditure which subsequently imbalance the body's homeostasis. L-ascorbic acid (L-AA) has been recognized to mitigate the negative impact of environmental stress on production performances in birds. The present investigation was carried out to elucidate the effect of different dietary levels of L-AA on production performance, egg quality traits and fertility in Japanese quail at low ambient temperature. Sixty matured females (15 wks) were equally divided into three groups (20/group) based on the different dietary levels of L-AA (0, 250 and 500 ppm) and coupled with an equal number of males (1:1) obtained from the same hatch. They were managed in uniform husbandry conditions without restriction of feed and water at 14 h photo-schedule. Except for feed efficiency, body weight change, feed consumption and hen-day egg production were recorded highest in 500 ppm L-AA supplemented groups. Among the all egg quality traits studied, only specific gravity, shell weight and thickness differed significantly (p<0.05) in the present study. Fertility was improved significantly ($p{\leq}0.01$) to a dose dependent manner of L-AA. The findings of the present study concluded that dietary L-AA can be a caring management practice at least in part to alleviate the adverse effect of cold induced stress on production performance in Japanese quail.