• Title/Summary/Keyword: L-C Resonance

Search Result 199, Processing Time 0.03 seconds

Relationship between needle depth for lumbar transforaminal epidural injection and patients' height and weight using magnetic resonance imaging

  • John, Hyunji;Sohn, Kyomin;Kim, Jae Hun
    • The Korean Journal of Pain
    • /
    • v.35 no.3
    • /
    • pp.345-352
    • /
    • 2022
  • Background: Optimal needle depth in transforaminal epidural injection (TFEI) is determined by body measurements and is influenced by the needle entry angle. Physician can choose the appropriate needle length and perform the procedure more effectively if depth is predicted in advance. Methods: This retrospective study included patients with lumbosacral pain from a single university hospital. The skin depth from the target point was measured using magnetic resonance imaging transverse images. The depth was measured bilaterally for L4 and L5 TFEIs at 15°, 20°, and 25° oblique angles from the spinous process. Results: A total of 4,632 measurements of 386 patients were included. The lengths of the left and right TFEI at the same level and oblique angle were assessed, and no statistical differences were identified. Therefore, linear regression analysis was performed for bilateral L4 and L5 TFEIs. The R-squared values of height and weight combined were higher than the height, weight, and body mass index (BMI). The following equation was established: Depth (mm) = a - b (height, cm) + c (weight, kg). Based on the equation, maximal BMI capable with a 23G, 3.5-inch, Quincke-type point spinal needle was presented for three different angles (15°, 20°, and 25°) at lumbar levels L4 and L5. Conclusions: The maximal BMI that derived from the formulated equation is listed on the table, which can help in preparations for morbid obesity. If a patient has bigger BMI than the one in the table, the clinician should prepare longer needle than the usual spinal needle.

In-line Oil Viscosity Sensor Implementing An Elastomagnetic Ribbon Resonance (자기탄성체 리본의 공진을 이용한 인-라인 오일 점도센서)

  • Kong, H.;Han, H.G.;Markova, L.V.
    • Tribology and Lubricants
    • /
    • v.26 no.2
    • /
    • pp.97-104
    • /
    • 2010
  • A new magnetoelastic technique of oil viscosity measurement, where the oil viscosity is estimated by frequency shift of natural oscillations of magnetoelastic ribbon, is implemented in this study. Laboratory tests of the detector prototype are performed for measurement of viscosity of base synthetic and mineral oils. It was found that measurement accuracy was better when damping factor was estimated in comparison with accuracy of frequency of damped oscillations. Thus the oil viscosity was calibrated as a function of number of pulses of the damped oscillations of magnetoelastic ribbon. Result generally showed that developed detector is promising for in line oil viscosity measurement in wide viscosity range from 10 cSt up to 600 cSt, while the viscosity measurement was relatively instable when the viscosity of test oil was over 400 cSt.

Decompressive Surgery in a Patient with Posttraumatic Syringomyelia

  • Byun, Min-Seok;Shin, Jun-Jae;Hwang, Yong-Soon;Park, Sang-Keun
    • Journal of Korean Neurosurgical Society
    • /
    • v.47 no.3
    • /
    • pp.228-231
    • /
    • 2010
  • Posttraumatic syringomyelia may result from a variety of inherent conditions and traumatic events, or from some combination of these. Many hypotheses have arisen to explain this complex disorder, but no consensus has emerged. A 28-year-old man presented with progressive lower extremity weakness, spasticity, and decreased sensation below the T4 dermatome five years after an initial trauma. Magnetic resonance imaging (MRI) revealed a large, multi-septate syrinx cavity extending from C5 to L1, with a retropulsed bony fragment of L2. We performed an L2 corpectomy, L1-L3 interbody fusion using a mesh cage and screw fixation, and a wide decompression and release of the ventral portion of the spinal cord with an operating microscope. The patient showed complete resolution of his neurological symptoms, including the bilateral leg weakness and dysesthesia. Postoperative MRI confirmed the collapse of the syrinx and restoration of subarachnoid cerebrospinal fluid (CSF) flow. These findings indicate a good correlation between syrinx collapse and symptomatic improvement. This case showed that syringomyelia may develop through obstruction of the subarachnoid CSF space by a bony fracture and kyphotic deformity. Ventral decompression of the obstructed subarachnoid space, with restoration of spinal alignment, effectively treated the spinal canal encroachment and post-traumatic syringomyelia.

NMR Structure of Syndecan-4L reveals structural requirement for PKC signalling

  • Koo, Bon-Kyoung;Joon Shin;Oh, Eok-Soo;Lee, Weontae
    • Proceedings of the Korean Magnetic Resonance Society Conference
    • /
    • 2002.08a
    • /
    • pp.90-90
    • /
    • 2002
  • Syndecans, transmembrane heparan sulfate proteoglycans, are coreceptors with integrin in cell adhesion process. It forms a ternary signaling complex with protein kinase C and phosphatidylinositol 4,5 bisphosphate (PIP2) for integrin signaling. NMR data indicates that cytoplasmic domain of syndecan-4 (4L) undergoes a conformational transition in the presence of PIP2, forming oligomeric conformation. The structure based on NMR data demonstrated that syndecan-4L itself forms a compact intertwined symmetric dimer with an unusual clamp shape for residues Leu$^{186}$ -Ala$^{195}$ . The molecular surface of the syndecan-4L dimer is highly positively charged. In addition, no inter-subunit NOEs in membrane proximal amino acid resides (Cl region) has been observed, demonstrating that the Cl region is mostly unstructured in syndecan-4L dimmer. However, the complex structure in the presence of PIP2 induced a high order multimeric conformation in solution. In addition, phosphorylation of cytoplasmic domain induces conformational change of syndecan-4, resulting inhibition of PKC signaling. The NMR structural data strongly suggest that PIP2 promotes oligomerization of syndecan-4 cytoplasmic domain for PKC activation and further induces structural reorganization of syndecan for mediating signaling network in cell adhesion procedure.

  • PDF

A Study on Resonance Tracking Method of Ultrasonic Welding Machine Inverter (초음파 용접기 인버터의 공진 추종 방법에 관한 연구)

  • Moon, Jeong-Hoon;Park, Sung-Jun;Lim, Sang-Kil;Kim, Dong-Ok
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.4_2
    • /
    • pp.481-490
    • /
    • 2021
  • In the ultrasonic welding machine, when the load fluctuates, the L and C of the piezo element in the oscillation part change. As a result, the resonant frequency is changed, so it is necessary to match the operating frequency of the ultrasonic welding machine to the new resonant frequency. That is, in order to maximize the output of the oscillation unit of the ultrasonic welding machine, it is inevitable to follow the resonance frequency. Accordingly, many methods for following the resonant frequency are being actively studied. In addition, in order to check the effect of external inductance on the operation of the ultrasonic welding machine, The equivalent circuit of the piezo element was analyzed by including the external inductance for resonance in the equivalent circuit of the piezo element, and the method of selecting an appropriate inductance was described. In this paper, we propose a new system that allows the switching frequency of the inverter to tracking the resonance frequency even if the resonance frequency is changed due to the load of the ultrasonic welding machine.

Structural Studies of Copper(II)-Hippuryl-L-histidyl-L-leucine(HHL) Complex by NMR Methods

  • Lee Seong-Ran;Jun Ji-Hyun;Won Ho-Shik
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.10 no.1
    • /
    • pp.115-125
    • /
    • 2006
  • Hippuryl-L-histidyl-L-leucine(HHL) is widely used as a substrate of angiotensin converting enzyme(ACE) cleaving the neurotransmitter angiotensin(I) to the octapeptide angiotensin(II). The structure of the substrate molecules should provide information regarding the geometric requirements of the ACE active site. For the purpose of determination of in vivo reaction, metallo(Cu, Zn)-HHL complexes were synthesized and the degree of complex formation were identified by MALDITOF, ESI mass spectrometric analysis. Tn addition, the pH-dependent species distribution curves were obtained by potentiometric titration. Nitrogen atoms of imidazole ring and oxygen atom of caboxylate groups in the peptide chain were observed to be participated in the metal complex formation. After purification of complexes further structural characterization were made by utilizing UV-Vis, electrochemical methods and NMR. Complete NMR signal assignments were carried out by using 2D-spectrum techniques COSY, TOCSY, NOESY, HETCOR. A complex that two imidazole and carboxylate groups are asymmetrically participating to coordination mode was predicted to the solution-state structure of $Cu(II)-HHL_2$ based on $^{13}C-NMR$ signal assignment and NOE information.

  • PDF

Analysis and Performance of the Self Excited Eddy Current Brake

  • Cho, Sooyoung;Jeong, Teachul;Bae, Jaenam;Yoo, Changhee;Lee, Ju
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.459-465
    • /
    • 2017
  • This paper describes a performance analysis of self-excited eddy current brake(SECB). Stator winding of SECB is connected by capacitor instead of voltage source, and SECB's braking force is generated by L-C resonance. SECB has wide range of driving and nonlinear inductance as well. Therefore, it is important to select capacitance based on the value of inductance. This paper discusses about the process of deciding capacitance and the change of resonance frequency based on the inductance change in each speed. Also the braking force was confirmed by the experimental model of SECB.

A Novel Compact CPW-fed Antenna with Multi-resonance Mode

  • Choi, Hyo-Sub;Ko, Jae-Jin;Lee, Chul-Dong
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.6
    • /
    • pp.635-639
    • /
    • 2010
  • A multi-resonance antenna for wireless communications is reported. By using double inverted-L strips, the antenna demonstrated compact size (15 mm ${\times}$ 14 mm) including the ground, multi-band operation for IEEE 802.11 a/b/g/p applications, and wide bandwidth of 1.7 GHz at 5 GHz band. Good radiation features of omni-directional patterns and 1.98 and 2.29 dBi peak antenna gains for the lower and upper bands, respectively, have been achieved.