• 제목/요약/키워드: L shaped specimens

검색결과 61건 처리시간 0.032초

Shear and impact strength of waste plastic fibre reinforced concrete

  • Karanth, Savithri S;Ghorpade, Vaishali G;Rao, H Sudarsana
    • Advances in concrete construction
    • /
    • 제5권2호
    • /
    • pp.173-182
    • /
    • 2017
  • This paper is aimed at determining the shear and impact strength of waste plastic fibre reinforced concrete. M30 grade of concrete is prepared with waste plastic door fibres cut into 5 mm width and aspect ratios of 30, 50, 70, 90 and 110. Fibres are used in a volume fraction of 0 to 1.5% with an increment of 0.25%. L shaped specimens are cast for shear strength tests and flat plates of size $250{\times}250{\times}30mm$ are used for impact tests. "Drop ball method" is used for checking the impact strength. Shear strength is checked with L shaped specimens under UTM with a special attachment. It was found that up to 1.25% of waste plastic fibres can be effectively used for better strength of concrete both in shear and impact. Shear and impact strength were found to be increasing up to a volume fraction of fibres of 1.25%.

Seismic performance of L-shaped RC walls sustaining Unsymmetrical bending

  • Zhang, Zhongwen;Li, Bing
    • Structural Engineering and Mechanics
    • /
    • 제78권3호
    • /
    • pp.269-280
    • /
    • 2021
  • Reinforced concrete (RC) structural walls with L-shaped sections are commonly used in RC buildings. The walls are often expected to sustain biaxial load and Unsymmetrical bending in an earthquake event. However, there currently exists limited experimental evidence regarding their seismic behaviour in these lateral loading directions. This paper makes experimental and numerical investigations to these walls behaviours. Experimental evidences are presented for four L-shaped wall specimens which were tested under simulated seismic load from different lateral directions. The results highlighted some distinct behaviour of L-shaped walls sustaining Unsymmetrical bending relating to their seismic performance. First, due to the Unsymmetrical bending, out-of-plane reaction forces occur for these walls, which contribute to accumulation of the out-of-plane deformations of the wall, especially when out-of-plane stiffness of the section is reduced by horizontal cracks in the cyclic load. Secondly, cracking was found to affect shear centre of the specimens loaded in the Unsymmetrical bending direction. The shear centre of these specimens distinctly differs in the flange in the positive and negative loading direction. Cracking of the flange also causes significant warping in the bottom part of the wall, which eventually lead to out-of-plane buckling failure.

가력방향이 다른 L형 벽체의 내력특성 평가를 위한 비선형 FEM 해석 (Nonlinear FEM Analysis for Strength Characteristics of L-shaped Walls with Different Load-directions)

  • 조남선;하상수;최창식;오영훈;이리형
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.443-448
    • /
    • 2002
  • The cross sections of structural walls have various shapes such as T, L, and H-shaped. The L-shaped walls frequently appear in the comer of the structural plans. There are a little researches on the structural performance of L-shaped walls subjected to hi-directional loads. L-shaped wall subjected to hi-directional loads might be failed due to high compressive stress in the corner of the wall. L-shaped wall subjected to bi-directional(45$^{\circ}$ direction) loads was failed by the compressive failure more possible than that of one-directional(0$^{\circ}$ direction) loads. Therefore, in this paper, Two L-shaped wall specimens are chosen and presented. One is LCU specimen subjected to the bi-directional loads, the other is LCX specimen subjected to the one-directional loads. Also, the experimental results compared with the analytical results from nonlinear FEM analysis.

  • PDF

Shear mechanism and bearing capacity calculation on steel reinforced concrete special-shaped columns

  • Xue, J.Y.;Chen, Z.P.;Zhao, H.T.;Gao, L.;Liu, Z.Q.
    • Steel and Composite Structures
    • /
    • 제13권5호
    • /
    • pp.473-487
    • /
    • 2012
  • An experimental study was performed to investigate the seismic performance of steel reinforced concrete (SRC) special-shaped columns. For this purpose, 17 steel reinforced concrete special-shaped column specimens under low-cyclic reversed load were tested, load process and failure patterns of the specimens with different steel reinforcement were observed. The test results showed that the failure patterns of these columns include shear-diagonal compression failure, shear-bond failure, shear-flexure failure and flexural failure. The failure mechanisms and characteristics of SRC special-shaped columns were also analyzed. For different SRC special-shaped columns, based on the failure characteristics and mechanism observed from the test, formulas for calculating ultimate shear capacity in shear-diagonal compression failure and shear-bond failure under horizontal axis and oblique load were derived. The calculated results were compared with the test results. Both the theoretical analysis and the experimental results showed that, the shear capacity of T, L shaped columns under oblique load are larger than that under horizontal axis load, whereas the shear capacity of +-shaped columns under oblique load are less than that under horizontal axis load.

Seismic behavior of steel truss reinforced concrete L-shaped columns under combined loading

  • Ning, Fan;Chen, Zongping;Zhou, Ji;Xu, Dingyi
    • Steel and Composite Structures
    • /
    • 제43권2호
    • /
    • pp.139-152
    • /
    • 2022
  • Steel-reinforced concrete (SRC) L-shaped column is the vertical load-bearing member with high spatial adaptability. The seismic behavior of SRC L-shaped column is complex because of their irregular cross sections. In this study, the hysteretic performance of six steel truss reinforced concrete L-shaped columns specimens under the combined loading of compression, bending, shear, and torsion was tested. There were two parameters, i.e., the moment ratio of torsion to bending (γ) and the aspect ratio (column length-to-depth ratio (φ)). The failure process, torsion-displacement hysteresis curves, and bending-displacement hysteresis curves of specimens were obtained, and the failure patterns, hysteresis curves, rigidity degradation, ductility, and energy dissipation were analyzed. The experimental research indicates that the failure mode of the specimen changes from bending failure to bending-shear failure and finally bending-torsion failure with the increase of γ. The torsion-displacement hysteresis curves were pinched in the middle, formed a slip platform, and the phenomenon of "load drop" occurred after the peak load. The bending-displacement hysteresis curves were plump, which shows that the bending capacity of the specimen is better than torsion capacity. The results show that the steel truss reinforced concrete L-shaped columns have good collapse resistance, and the ultimate interstory drift ratio more than that of the Chinese Code of Seismic Design of Building (GB50011-2014), which is sufficient. The average value of displacement ductility coefficient is larger than rotation angle ductility coefficient, indicating that the specimen has a better bending deformation resistance. The specimen that has a more regular section with a small φ has better potential to bear bending moment and torsion evenly and consume more energy under a combined action.

Experimental and analytical performance evaluation of steel beam to concrete-encased composite column with unsymmetrical steel section joints

  • Xiao, Yunfeng;Zeng, Lei;Cui, Zhenkun;Jin, Siqian;Chen, Yiguang
    • Steel and Composite Structures
    • /
    • 제23권1호
    • /
    • pp.17-29
    • /
    • 2017
  • The seismic performance of steel beam to concrete-encased composite column with unsymmetrical steel section joints is investigated and reported within this paper. Experimental and analytical evaluation were conducted on a total of 8 specimens with T-shaped and L-shaped steel section under lateral cyclic loading and axial compression. The test parameters included concrete strength, stirrup ratio and axial compression ratio. The response of the specimens was presented in terms of their hysterisis loop behavior, stress distribution, joint shear strength, and performance degradation. The experiment indicated good structural behavior and good seismic performance. In addition, a three-dimensional nonlinear finite-element analysis simulating was conducted to simulate their seismic behaviors. The finite-element analysis incorporated both bond-slip relationship and crack interface interaction between steel and concrete. The results were also compared with the test data, and the analytical prediction of joint shear strength was satisfactory for both joints with T-shaped and L-shaped steel section columns. The steel beam to concrete-encased composite column with unsymmetrical steel section joints can develop stable hysteretic response and large energy absorption capacity by providing enough stirrups and decreased spacing of transverse ties in column.

풍력터빈 지지구조물의 볼트 체결된 L형 플랜지에 대한 인장 실험 및 FE해석 (Tensile Experiment and FE Analysis of L-type Flange Bolt Connection in Wind Turbine Support Structures)

  • 정대진;최익창
    • 풍력에너지저널
    • /
    • 제15권2호
    • /
    • pp.37-44
    • /
    • 2024
  • In this study, a tensile test and FE analysis were conducted on a bolt-connected L-shaped flange to evaluate its behavior and load resistance. A total of five specimens were manufactured using the inner and outer distances and bolt diameters of the L-type flange as experimental variables. As a result of the tensile test of the L-shaped flange, as the internal and external length ratio (b/a) increased, the maximum load decreased and the maximum displacement increased. As the diameter (d) of the bolt increased, the maximum load and the deformation of the wall increased. The shapes of the destruction specimens showed two forms of destruction: one due to the fall of the nut and the surrender of the bolt as the thread of the bolt and nut was worn out, followed by the surrender of the wall. As a result of FE analysis, it was found that elasto-plastic model (EPM) analysis similarly tracks the behavior of the tensile test results.

Behavior and crack development of fiber-reinforced concrete spandrel beams under combined loading: an experimental study

  • Ibraheema, Omer Farouk;Abu Bakar, B.H.;Joharib, I.
    • Structural Engineering and Mechanics
    • /
    • 제54권1호
    • /
    • pp.1-17
    • /
    • 2015
  • An experimental investigation is conducted to examine the behavior and cracking of steel fiberre-inforced concrete spandrel L-shaped beams subjected to combined torsion, bending, and shear. The experimental program includes 12 medium-sized L-shaped spandrel beams organized into two groups, namely, specimens with longitudinal reinforcing bars, and specimens with bars and stirrups. All cases are examined with 0%, 1%, and 1.5% steel fiber volume fractions and tested under two different loading eccentricities. Test results indicate that the torque to shear ratio has a significant effect on the crack pattern developed in the beams. The strain on concrete surface follows the crack width value, and the addition of steel fibers reduces the strain. Fibrous concrete beams exhibited improved overall torsional performance compared with the corresponding non-fibrous control beams, particularly the beams tested under high eccentricity.

Seismic behavior and strength of L-shaped steel reinforced concrete column-concrete beam planar and spatial joints

  • Chen, Zongping;Xu, Deyi;Xu, Jinjun;Wang, Ni
    • Steel and Composite Structures
    • /
    • 제39권3호
    • /
    • pp.337-352
    • /
    • 2021
  • The study presented experimental and numerical investigation on the seismic performance of steel reinforced concrete (SRC) L-shaped column- reinforced concrete (RC) beam joints. Various parameters described as steel configuration form, axial compressive ratio, loading angle, and the existence of slab were examined through 4 planar joints and 7 spatial joints. The characteristics of the load-displacement response included the bearing capacity, ductility, story drift ratio, energy-dissipating capacity, and stiffness degradation were analyzed. The results showed that shear failure and flexural failure in the beam tip were observed for planar joints and spatial joint, respectively. And RC joint with slab failed with the plastic hinge in the slab and bottom of the beam. The results indicated that hysteretic curves of spatial joints with solid-web steel were plumper than those with hollow-web specimens. The capacity of planar joints was higher than that of space joints, while the opposite was true for energy-dissipation capacity and ductility. The high compression ratio contributed to the increase in capacity and initial stiffness of the joint. The elastic and elastic-plastic story deformation capacity of L-shaped column frame joints satisfied the code requirement. A design formula of joint shear resistance based on the superposition theory and equilibrium plasticity truss model was proposed for engineering application.

레이저 초음파 기반 반사식 회전 검사 기법을 이용한 오토클레이브 가공 L 형 복합재 구조물의 모서리 검사 (Corner Inspection of Autoclave-cured L-shaped Composite Structure using Pulse-echo Rotation Scanning Scheme based on Laser Ultrasonic)

  • 이영준;이정률;홍성진
    • Composites Research
    • /
    • 제31권5호
    • /
    • pp.246-250
    • /
    • 2018
  • 본 연구에서는 곡면 복합재 구조물의 모서리에 위치한 결함을 검사하고 가시화하기 위해 제안된 레이저 초음파 기반 회전식 검사 기법을 소개한다. 모서리 부위에 결함이 위치한 L 형 복합재 구조물을 레이저 초음파 기반 회전식 검사 기법을 이용하여 검사하였다. L 형 시편은 층간분리 손상을 모사하기 위해 각기 다른 세 가지 깊이에 위치한 인공 결함을 포함하고 있다. 모든 인공 결함이 각각의 위치한 깊이에 따라 다른 시간대에 선명하게 탐지되었다. 검사결과는 제안된 방법이 어떠한 특별한 도구 없이도 곡면 복합재 구조물의 모서리 부위의 검사에 적합하다는 것을 보여준다.