• Title/Summary/Keyword: L(+)-lactate

Search Result 415, Processing Time 0.029 seconds

Simultaneous Quantification of Urinary L-, and D-Lactate by Reversed-Phase Liquid Chromatography Tandem Mass Spectrometry (액체크로마토그래프-탠덤질량분석기(LC-MS/MS)를 이용한 소변 내 D-, L- Lactate 분리 및 정량)

  • Moon, Chul Jin;Yang, Song Hyun
    • Journal of The Korean Society of Inherited Metabolic disease
    • /
    • v.15 no.2
    • /
    • pp.59-64
    • /
    • 2015
  • Purpose: Lactate has two optical isomers, L-lactate and D-lactate. In human L-lactate is the most abundant enantiomer of lactate. As plasma and urinary levels of L-lactate is associated with inherited metabolic disorders in general, D-lactate have been linked to the presence of diabetes and inflammatory bowel disease. Previously developed techniques have shown several limitations to further evaluate D-lactate as a biomarker for this condition. In this paper, we describe a highly sensitive, specific and fast liquid chromatography tandem mass spectrometry (LC-MS/MS) method for the analysis of D-, L-lactate in urine. Methods: D- and L-lactate were quantified using high performance liquid chromatography tandem mass spectrometry (LC-MS/MS) with labelled internal standard. Samples were derivatized with (+)-O,O'-diacety-L-tartaric anhydride (DATAN) and seperated on a Poroshell 120 EC-C18 column. Results: Quantitative analysis of D-, and L-lactate was achieved successfully. Calibration curves were linear (r>0.999) over $0.5-100{\mu}g/mL$. Stabilities for samples were within the 10% varation. Inter- and Intra-day assay variations were below 10%. Conclusion: The presented method proved to be suitable for the quantitation of D- and L-lactate and opens the possibility to explore the use of D-lactate as a biomarker.

Preliminary Data on the Ratio of D(-)-Lactate and L(+)-Lactate Levels in Various Lactic Acid Bacteria as Evaluated using an Enzymatic Method

  • Song, Kwang-Young
    • Journal of Dairy Science and Biotechnology
    • /
    • v.40 no.1
    • /
    • pp.15-22
    • /
    • 2022
  • This study evaluated the levels of D(-)-lactate and L(+)-lactate, and the ratio of D(-)-lactate to total lactate (D(-)-lactate + L(+)-lactate) of 15 lactic acid bacteria (LAB) using an enzymatic method. D(-)-lactate and L(+)-lactate levels in the LAB ranged from 0.31 to 13.9 mM and 0.76 to 39.3 mM, respectively, in Bifidobacterium sp.; 1.08 to 11.7 mM and 0.69-13.0 mM in Lactobacillus sp.; 0.72 to 20.3 mM and 0.98 to 32.3 mM in Leuconostoc sp., and 33.0 mM and 39.2 mM in Pediococcus acidilacti KCCM 11747. The ratio of the range of D(-)-lactic acid to total lactic acid was 28.98%-45.76% in Bifidobacterium sp., 41.18%-61.02% in Lactobacillus sp., 29.85%-42.36% in Leuconostoc sp., and 45.71% in P. acidilacti KCCM 11747. In the future, there is a need to test for D(-)-lactate in various fermented products to which different LAB have been added and study the screening of LAB used as probiotics that produce various concentrations of D(-)-lactate.

Maximal Oxygen Debt, Lactate and Excess Lactate in Men with Low Hematocrit Ratio (헤마토크?????? 비율이 낮은 사람에 있어서 최대 산소 부채와 과잉젖산 사이의 관계)

  • Kim, Dai-Sung;Nam, Kee-Yong
    • The Korean Journal of Physiology
    • /
    • v.2 no.2
    • /
    • pp.53-61
    • /
    • 1968
  • Maximal oxygen debt, lactate and excess lactate were measured in 13 men with low hematocrit ratio before and after maximal exercise. Maximal exercise run was performed on a treadmill and the duration of run was 2 minutes 45 seconds in each subject. Hematocrit ratio ranged between 35 and 47%, the mean being 39.8%. The following results were obtained. 1. Maximal oxygen debt expressed on basis of body weight increased as the hematocrit ratio decreased. The correlation coefficient between the two was r= -0.770. 2. The time necessary for decreasing to 50% of total maximal $O_2$ debt(half time) became longer as the hematocrit ratio decreased. In normal men the half time was about 4 minutes and at the longest it was 12 minutes in men with the lowest hematocrit ratio. 3. The lactate concentration reached its peak value after 3 minutes of recovery. Thereafter, the time course of decrease in lactate concentration coincided roughly with that of respiratory oxygen debt curve. To reach to the resting level, however, it took longer time than that of respiratory oxygen debt. 4. Resting concentrations of lactate was 1.28 mM/l, pyruvate 0.13 mM/l and L/P ratio was 9.8. Peak value of ${\Delta}L$ after exercise reached to the value of 10.4 mM/l and ${\Delta}L/P$ reached 26.0. Peak excess lactate after exercise was 6.34 mM/l. 5. The part of oxygen debt accounted for by the oxygen equivalent of excess lactate was only 38.4%. A better relationship between lactate and oxygen debt was observed and the part of oxygen debt accounted for by the oxygen equivalent of lactate was 63.3%. 6. Peak value of lactate after maximal exercise increased as the hematocrit ratio decreased. 7. Respiratory oxygen debt of 100 ml/kg was accounted for by lactate more than 60% and only 30% was by excess lactate. 8. Excess lactate was not a good index of respiratory oxygen debt.

  • PDF

Recovery of Sodium Lactate Using Nanofiltration (나노여과를 이용한 Sodium Lactate의 회수)

  • 이은교;강상현;장용근;장호남
    • Microbiology and Biotechnology Letters
    • /
    • v.27 no.4
    • /
    • pp.320-326
    • /
    • 1999
  • The effects of operating pressure, lactate concentration, impurities, and pH on solution flux and lactate rejection in nanofiltration were investigated with model sodium lactate solutions (lactate 10~200g/L) as a model system. In the tested range of pressure(80~140 psig), the solution flux was observed to be proportional to the operating pressure and the rejection of lactate increased only slightly with the pressure. Both of the flux and the rejection decreased with lactate concentration, while the recovery rate of lactate increased. The effects of glucose and yeast extract as impurities on lactate rejection were negligible, but the flux decreased significantly with the addition of yeast extract. At low lactate concentrations, the rejection of lactate increased with pH due to the increased repulsion (Donnan exclusion effect) between lactate ions and membrane surface. But, at high lactate concentrations, the donnan effect was observed to be overwhelmed by the effect of sodium ions added to adjust the pH, and the rejection of lactate decreased with pH. When fermentation broth containing about 89g/L of lactate was nanofiltered, the flux and the rejection of lactate were 2.8L/$m^2$h and 5%, respectively at 120psig. Both of them were slightly lower than those with model solutions. The recovery rate was 2.6mol/$m^2$h.

  • PDF

Electrocatalytic Properties of Metal-dispersed Carbon Paste Electrodes for Reagentless L-lactate Biosensors (금속이 첨가된 탄소전극의 전기화학적 특성과 이를 이용한 L-lactate 바이오센서의 개발)

  • 윤현철;김학성
    • KSBB Journal
    • /
    • v.11 no.4
    • /
    • pp.489-496
    • /
    • 1996
  • Metal dispersed carbon paste electrodes were fabricated, and their electrochemical properties were investigated. Among various metal dispersed carbons, platinum-dispersed carbon paste electrode showed most efficient electrocatalytic characteristics. The overpotential for the oxidation of NADH was significantly lowered in the platinum-dispersed carbon paste electrode, and catalytic current was also enhanced. Based on these electrocatalytic observations, L-lactate biosensor using L-lactate dehydrogenase was constructed to evaluate its performance in terms of sensitivity and stability.

  • PDF

Lactate dehydrogenase activity and isoenzyme distribution in plasma and tissue of Korean native cattle (한우의 혈장 및 조직중의 lactate dehydrogenase의 활성치와 isoenzyme의 분포)

  • Kim, Ki-seog;Cho, Jong-hoo
    • Korean Journal of Veterinary Research
    • /
    • v.29 no.4
    • /
    • pp.461-467
    • /
    • 1989
  • The activity of lactate dehydrogenase in plasma and various tissues(skeletal muscle, cardiac muscle, liver, lung, kidney and spleen) of Korean native cattle in a Chonju abattoir, the Breeding Stock Farm and Animal Farm of Chonbuk University was determined by using ultra violet method. Using polyacrylamide gel electrophoresis, the lactate dehydrogenase isoenzyme distrimution of plasma and various tissues in Korean native cattle was studied. The plasma lactate dehydrogenase activity of Korean native cattle was $554.80{\pm}92.70IU/l$ and the lactate dehydrogenase activity of male plasma was $543.96{\pm}97.89IU/l$, which was lower than that of female plasma, $579.19{\pm}78.09IU/l$. The plasma lactate dehydrogenase activity of calf was $557.31{\pm}110.27IU/l$ and was no significantly different from that of adult Korean native cattle. But the range of calf lactate dehydrogenase activity was larger than that of adult Korean native cattle. In tissues, the lactate dehydrogenase activity was decreased in order of lung, kidney, spleen, liver, heart and skeletal muscle. The lung had the greatest activity and the skeletal muscle had the least. Lactate dehydrogenase isoenzymes in plasma and tissues were found to have a characteristic distribution and quantitative isoenzyme patterns. In plasma, the LDH1 usually had the greatest activity and other isoenzymes showed a decreasing tendency in order of LDH2, LDH3, LDH4 and LDH5. The distribution of lactate dehydrogenase isoenzymes had a wide variation in tissues. But the distribution of LDH isoenzymes in plasma was similar to that in kidney, and also cardiac muscle and spleen had similar pattern in LDH isoenzymes distribution.

  • PDF

균체재순환 반응기에서의 젖산 생산

  • 유익근;장호남
    • Microbiology and Biotechnology Letters
    • /
    • v.22 no.3
    • /
    • pp.277-282
    • /
    • 1994
  • In batch cultures of Lactobacillus delbrueckii, cell growth and lactic acid production were affected by two main factors, inhibition by lactic acid and limitation by nutritional components. In order to increase th productivity significantly, a continuous stirred tank reactor with cell recycle was employed. A cell desnity of 145g dry weight/l and a volumetric productivity of 73 g/l$\cdot $h were obtained with an effluent concentration of 85 g/l lactic acid. The productivity achieved by this system was 23-fold higher than those obtained by the corresponding batch cultivations. Once the lactic acid concentration reached the steady steady state, lowering the yeast extract concentration caused the reduction of the lactic acid concentration without affection the biomass concentration. Finally, the formation of D-lactate was investgated. During the various cultures, a small amount of D-lactate always formed, even thought a majority of lactate was L-isomer, It was supposed that the relative amount of the D-lactate was affected by glucose limitation, and there seems to exist a certain relationship between the concentration of D-lactate and acetate.

  • PDF

Assimilation of Peptides and Amino Acids and Dissimilation of Lactate During Submerged Pure Cultures of Penicillium camembertii and Geotrichum candidum

  • Aziza, M.;Adour, L.;Amrane, A.
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.1
    • /
    • pp.124-127
    • /
    • 2008
  • The behavior of Penicillium camembertii and Geotrichum candidum growing in submerged pure cultures on simple (glutamate) or complex (peptones) substrates as nitrogen and carbon sources and lactate as a second carbon source was examined. Similar to the behavior previously recorded on a simple substrate (glutamate), a clear differentiation between the carbon source and the energy source was also shown on peptones and lactate during P. camembertii growth, since throughout growth, lactate was only dissimilated, viz., used for energy supply by oxidation into $CO_2$, whereas peptides and amino acids from peptones were used for carbon (and nitrogen) assimilation. Because of its deaminating activity, G candidum preferred peptides and amino acids to lactate as energy sources, in addition to being assimilated as carbon and nitrogen sources. From this, on peptones and lactate, G candidum grew faster than P. camembertii (0.19 and 0.08 g/l/h, respectively) by assimilating the most readily utilizable peptides and amino acids; however, owing to its lower proteolytic activity, the maximum biomass was lower than that of P. camembertii (3.7 and 5.5 g/l, respectively), for which continuous proteolysis and assimilation of peptides were shown.

Purification and Properties of Thermostable L-Lactate Dehydrogenase Produced by Escherichia Coli (대장균으로 부터 생산된 L-lactate Dehydrogenase의 정제 및 특성)

  • Song, Jae-Young;Kim, Kyoug-Sook
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.23 no.6
    • /
    • pp.964-972
    • /
    • 1994
  • The 4.3-kb gene coding for L-lactate dehydrogenase of Bacillus stearothermophilus has been subcloned and expressed in E. coli cells. The enzyme was purified 200-fold with 25% yield by heat treatment , DEAE-Sephadex, and NAD++ -Sepharose CL-4B affinity chromatography followed by gel filtration through Sephadex G-200 . The molecular weight of the purfied enzyme was estimated to be about 35, 000 and 140, 000 on SDS-polyacrylamide gel electrophoresis and gel filtration, respectively. indicating that the enzyme is composed of four identical subunits. THe enzyme for pyruvate reduction and lactate oxdiation was stable at 60 and 75$^{\circ}C$ for 30 min, and the optimal temperatures for both reactions were 60 and 7$0^{\circ}C$, respectively. The enzyme had an optimal pH at 5.5 and 8.5 in pyruvate reduction and lactate oxidation, respectively. The pH stability of enzyme of pyruvate reduction was table between pH 5 and 7. more than 90% of enzyme activity was lost at 1mM FeSO4 and p-chloromercuribonzoate. The maximal activation of the enzyme was obtained with 0.8mM fructose 1, 6-bisphosphate.

  • PDF

Cloning and Characterization of the Lactate Dehydrogenase Genes from Lactobacillus sp. RKY2

  • Lee, Jin-Ha;Choi, Mi-Hwa;Park, Ji-Young;Kang, Hee-Kyoung;Ryu, Hwa-Won;Sunwo, Chang-Sin;Wee, Young-Jung;Park, Ki-Deok;Kim, Do-Won;Kim, Do-Man
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.9 no.4
    • /
    • pp.318-322
    • /
    • 2004
  • Lactic acid is an environmentally benign organic acid that could be used as a raw material for biodegradable plastics if it can be inexpensively produced by fermentation. Two genes (ldhL and ldhD) encoding the L-(+) and D-(-) lactate dehydrogenases (L-LDH and D-LDH) were cloned from Lactobacillus sp., RKY2, which is a lactic acid hyper-producing bacterium isolated from Kimchi. Open reading frames of ldhL for and ldhD for the L and D-LDH genes were 962 and 998 bp, respectively. Both the L(+)- and D(-)-LDH proteins showed the highest degree of homology with the L- and D-lactate dehydrogenase genes of Lactobacillus plantarum. The conserved residues in the catalytic activity and substrate binding of both LDHs were identified in both enzymes.