• 제목/요약/키워드: Kyungju Earthquake

검색결과 5건 처리시간 0.016초

Investigation of Crustal Deformation due to the Kyungju Earthquake in 2016

  • Hong, Chang-Ki
    • 한국측량학회지
    • /
    • 제34권6호
    • /
    • pp.591-596
    • /
    • 2016
  • The $M_w=5.8$ Kyungju (South Korea) earthquake took place on 12 September 2016. This event may cause deformation around Kyungju city, located in the southeastern part of the Korean peninsula. In this study, GPS data was collected from the 17 Korean CORS and processed to determine the deformation. Minimum constraint solutions, to avoid the network distortion, are obtained and an S-transformation is applied to the coordinate difference vector and its covariance matrix for comparisons. In the final step, a statistical test is performed to determine the deformation due to the Kyungju earthquake. Based on the results, it was found that there is no significant deformation around Kyungju city. Hence, it can be said that the re-measurement or re-establishment of the geodetic control points in South Korea is not required.

한반도 동남부의 강진동 모사와 감쇠식 (Stochastic Prediction of Strong Ground Motions and Attenuation Equations in the Southeastern Korean peninsular)

  • 이정모
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2000년도 춘계 학술발표회 논문집 Proceedings of EESK Conference-Spring
    • /
    • pp.70-80
    • /
    • 2000
  • In order to reduce seismic hazard the characteristics of strong earthquakes are required. In the region where strong earthquakes do not happen frequently the stochastic simulation of strong motion is an alternative way to predict strong motions. this simulation required input parameters such as the quality factor the corner frequency the moment magnitude the stress drop and so on which can be obtained from analyses of records of small and intermediate earthquakes. Using those parameters obtained in the previous work the strong ground motions are predicted employing the stochastic method, . The results are compared to the two observed earthquakes-the Ulsan Offshore Earthquake and the Kyungju Earthquake. Although some deviations are found the predictions are similar to the observed data. Finally we computed attenuation equations for PGA PGV and ground accelerations for some frequencies using the results of predictions. These results can be used for earthquake engineering and more reliable results will come out as earthquake observations continue.

  • PDF

한국자원연구소 지진 네트워크 (Seismic Research Network in KIGAM)

  • 이희일
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2000년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Fall 2000
    • /
    • pp.49-56
    • /
    • 2000
  • Instrumental observation of earth quakes in KIGAM was first attempted in the earty 1980`s by using 6 portable seismographs in the vicinity of Yang-San Faults. Now twenty-four permanent stations, which are equipped with short-period or broad-band seismometer, are included in seismic research network in KIGAM, including KSRS array station in Wonju which is consisted of 26 bore-hole stations. The seismic network of KIGAM is also linked to that of KEPRI(Korea Electric Power Research Institute)which is consisted of eight stations installed within and around the nuclear power plants. Owing to real-time data acquisition by telemetry, it became feasible to automatically locate hypocenters of the local events within fifteen minutes by computer data processing system, named KEMS(Korea Earthquake Monitoring System). Results of the hypocenter determination, together with observational data, are compiled and stored in the data base system. And they are published via web site whose URL is http://quake.kigam.re.kr KIGAM is also running t재 permanent geomagnetic stations installed in Daejun and Kyungju. The observed geomagnetic data are transmitted to Earthquake Research Centre in KIGAM by seismic network and compiled for the purpose of earthquake prediction research and other basic geophysical research.

  • PDF

라돈방사능농도의 측정을 통한 지진발생 예측에 관한 연구 (A Study of the Prediction of Earthquake Occurrence by Detecting Radon Radioactivity)

  • 김윤신;이철민;이승일
    • 한국환경과학회지
    • /
    • 제12권6호
    • /
    • pp.677-688
    • /
    • 2003
  • The purpose of this study was to predict occurrence of earthquakes in Korea by measuring the concentration of radon radioactivity in the air and in the underground water. Two monitoring systems of radon concentration detection in the air were installed in Seoul, East Coast area, whereas of radon concentration in the underground water in Kyungju area during December, 1999 to June, 2001. The distribution of radon concentration in the air in Seoul is as follows Winter(10.10 $\pm$ 2.81 Bq/㎥), autumn(8.41 $\pm$ 1.35 Bq/㎥), summer(5.83 $\pm$ 0.05 Bq/㎥) and spring (5.34 $\pm$ 0.44 Bq/㎥), whereas the distribution of radon in the air in the East Coast area showed some difference as follows : autumn (14.08 $\pm$ 5.75 Bq/㎥), Summer (12.04 $\pm$ 0.53 Bq/㎥), Winter (12.02 $\pm$ 1.40 Bq/㎥) and spring (8.93 $\pm$ 0.91 Bq/㎥). In the meanwhile, the distribution of radon in the water is as follows : spring (123.59 $\pm$ 16.36count/10min), Winter (93.95 $\pm$ 79.69counter/10min), autumn (68.96 $\pm$ 37.53counter/10min) and spring (34.45 $\pm$ 9.69counter/10min). The daily range of the density of radon concentration in Seoul and East Coast area was between 5.51 Bq/㎥ - 9.44 Bq/㎥, 7.15 Bq/㎥ - 15.27 Bq/㎥, respectively. Correlation of the distributions of radon concentrations in the air and in underground water with earthquake showed considerable variations of radon concentration before the occurrence of the earthquake. The results suggested that radon radioactivity seemed to be helpful for the prediction of the occurrence of earthquake.

1997년 6월 26일 경주지진의 진도분석 및 지진 지질학적 의의 (Intensity Analysis of the 26 June 1997 Kyongju Earthquake and Its Geological Significance)

  • 경재복;이희욱
    • 지질공학
    • /
    • 제8권1호
    • /
    • pp.13-23
    • /
    • 1998
  • 1997년 경주에서 발생한 지진(M=4.3)에 대하여 남한의 300여 지역,2200여명에 대한 설문조사, 현장조사를 통해 진도를 평가하고 선구조선, 단층형태 및 피해지역과의 관계, 진도 감쇠특성 등을 평가하였다. 등진 도도선의 패턴은 거의 구형에 가까워 특정 지질구조선을 반영한다고 보기어려우나 경상분지 남서부를 제외한 전 분지가 진도 V이상의 범위에 포함된다. 진도 VII인 지역은 진앙의 서쪽 약 1.5Km에 위치한 양산단층에 인접한 충적층을 따라 길이 약 9Km, 폭 1-3Km의 긴 대상분포를 나타내다. 이 지역은 강한 지진동과 함께 동상 외벽이 떨어지고, 건물 및 주택 벽면의 균열, 담의 균열과 무너짐, 지붕의 기와가 흩어짐, 교각 상판의 고정볼트의 부러짐 등 피해가 발생하였다. 진앙지 일대의 선구조선의 분포는 거의 N-S,NNE방향이 우세하게 나타나며, 선구조선, 단층면해와 주피해지역의 분포를 고려할때 경주지진은 양산단층을 따라 주향이동 단층운동에 의해 발생한 규모 5.0내외 지진의 평균적인 감쇠 경향과 유사하며 거리(R)에 따른 진도감쇠(I)는 $I{\;}={\;}I_o{\;}+{\;}0.3461{\;}-{\;}0.3274{\;}{\times}{\;}1nR{\;}-{\;}0.086{\;}{\times}{\;}R$으로 나타내어 진다.

  • PDF