• Title/Summary/Keyword: Kyungju Earthquake

Search Result 5, Processing Time 0.017 seconds

Investigation of Crustal Deformation due to the Kyungju Earthquake in 2016

  • Hong, Chang-Ki
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.6
    • /
    • pp.591-596
    • /
    • 2016
  • The $M_w=5.8$ Kyungju (South Korea) earthquake took place on 12 September 2016. This event may cause deformation around Kyungju city, located in the southeastern part of the Korean peninsula. In this study, GPS data was collected from the 17 Korean CORS and processed to determine the deformation. Minimum constraint solutions, to avoid the network distortion, are obtained and an S-transformation is applied to the coordinate difference vector and its covariance matrix for comparisons. In the final step, a statistical test is performed to determine the deformation due to the Kyungju earthquake. Based on the results, it was found that there is no significant deformation around Kyungju city. Hence, it can be said that the re-measurement or re-establishment of the geodetic control points in South Korea is not required.

Stochastic Prediction of Strong Ground Motions and Attenuation Equations in the Southeastern Korean peninsular (한반도 동남부의 강진동 모사와 감쇠식)

  • 이정모
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.04a
    • /
    • pp.70-80
    • /
    • 2000
  • In order to reduce seismic hazard the characteristics of strong earthquakes are required. In the region where strong earthquakes do not happen frequently the stochastic simulation of strong motion is an alternative way to predict strong motions. this simulation required input parameters such as the quality factor the corner frequency the moment magnitude the stress drop and so on which can be obtained from analyses of records of small and intermediate earthquakes. Using those parameters obtained in the previous work the strong ground motions are predicted employing the stochastic method, . The results are compared to the two observed earthquakes-the Ulsan Offshore Earthquake and the Kyungju Earthquake. Although some deviations are found the predictions are similar to the observed data. Finally we computed attenuation equations for PGA PGV and ground accelerations for some frequencies using the results of predictions. These results can be used for earthquake engineering and more reliable results will come out as earthquake observations continue.

  • PDF

Seismic Research Network in KIGAM (한국자원연구소 지진 네트워크)

  • 이희일
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.10a
    • /
    • pp.49-56
    • /
    • 2000
  • Instrumental observation of earth quakes in KIGAM was first attempted in the earty 1980`s by using 6 portable seismographs in the vicinity of Yang-San Faults. Now twenty-four permanent stations, which are equipped with short-period or broad-band seismometer, are included in seismic research network in KIGAM, including KSRS array station in Wonju which is consisted of 26 bore-hole stations. The seismic network of KIGAM is also linked to that of KEPRI(Korea Electric Power Research Institute)which is consisted of eight stations installed within and around the nuclear power plants. Owing to real-time data acquisition by telemetry, it became feasible to automatically locate hypocenters of the local events within fifteen minutes by computer data processing system, named KEMS(Korea Earthquake Monitoring System). Results of the hypocenter determination, together with observational data, are compiled and stored in the data base system. And they are published via web site whose URL is http://quake.kigam.re.kr KIGAM is also running t재 permanent geomagnetic stations installed in Daejun and Kyungju. The observed geomagnetic data are transmitted to Earthquake Research Centre in KIGAM by seismic network and compiled for the purpose of earthquake prediction research and other basic geophysical research.

  • PDF

A Study of the Prediction of Earthquake Occurrence by Detecting Radon Radioactivity (라돈방사능농도의 측정을 통한 지진발생 예측에 관한 연구)

  • ;;;Takao Lida;Katsuhiro Yoshioka
    • Journal of Environmental Science International
    • /
    • v.12 no.6
    • /
    • pp.677-688
    • /
    • 2003
  • The purpose of this study was to predict occurrence of earthquakes in Korea by measuring the concentration of radon radioactivity in the air and in the underground water. Two monitoring systems of radon concentration detection in the air were installed in Seoul, East Coast area, whereas of radon concentration in the underground water in Kyungju area during December, 1999 to June, 2001. The distribution of radon concentration in the air in Seoul is as follows Winter(10.10 $\pm$ 2.81 Bq/㎥), autumn(8.41 $\pm$ 1.35 Bq/㎥), summer(5.83 $\pm$ 0.05 Bq/㎥) and spring (5.34 $\pm$ 0.44 Bq/㎥), whereas the distribution of radon in the air in the East Coast area showed some difference as follows : autumn (14.08 $\pm$ 5.75 Bq/㎥), Summer (12.04 $\pm$ 0.53 Bq/㎥), Winter (12.02 $\pm$ 1.40 Bq/㎥) and spring (8.93 $\pm$ 0.91 Bq/㎥). In the meanwhile, the distribution of radon in the water is as follows : spring (123.59 $\pm$ 16.36count/10min), Winter (93.95 $\pm$ 79.69counter/10min), autumn (68.96 $\pm$ 37.53counter/10min) and spring (34.45 $\pm$ 9.69counter/10min). The daily range of the density of radon concentration in Seoul and East Coast area was between 5.51 Bq/㎥ - 9.44 Bq/㎥, 7.15 Bq/㎥ - 15.27 Bq/㎥, respectively. Correlation of the distributions of radon concentrations in the air and in underground water with earthquake showed considerable variations of radon concentration before the occurrence of the earthquake. The results suggested that radon radioactivity seemed to be helpful for the prediction of the occurrence of earthquake.

Intensity Analysis of the 26 June 1997 Kyongju Earthquake and Its Geological Significance (1997년 6월 26일 경주지진의 진도분석 및 지진 지질학적 의의)

  • 경재복;이희욱
    • The Journal of Engineering Geology
    • /
    • v.8 no.1
    • /
    • pp.13-23
    • /
    • 1998
  • An intensity of the 1997 Kyungju earthquake(M=4.3) was estimated at three hundred locations based on the field survey and questionaires from 2200 residents. The isoseismal shows almost circular pattern which doesnot reflect some specific geological trends. However,most of the Kyeongsang basin except the southwestern part is included within the area of MM intensity V. There occurred strong shaking, numerous cracks on the wall of the houses, and movement of slate on the roofs, falling of the tiles from the monument. The isoseismal of the highest MM intensity VII, 1-3 km in width and 9 km in length, is elongated along the Yangsan fault, which is located about 1.5 km west from epicenter. The lineaments near the epicenter exhibit almost N-S and NNE directions. The lineament distribution, the pattern of damage area and the solution of fault plane suggest that the Kyongju earthquake occurred with strike-slip sense along the Yangsan fault. The calculated intensity attenuation(I) with distance(R) is as follows : $I{\;}={\;}I_o{\;}+{\;}0.3461{\;}-{\;}0.3274{\;}{\times}{\;}1nR{\;}-{\;}0.086{\;}{\times}{\;}R$.

  • PDF